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Abstract— In this paper, a risk-aware robotic sensor network 

(RSN) is proposed in the context of Critical Infrastructure 

Protection. Such a network will be comprised of mobile sensor 

nodes that perceive various aspects of their environment and 

topologically reconfigure in order to secure a strategic area of 

interest. Risk awareness is provided through the application of a 

recently developed Risk Management Framework to the RSN. 

The risk level of each node is assessed in terms of their degree of 

distress, proximity factor, and terrain maneuverability. Risk 

monitoring alerts are issued whenever any given sensor node’s 

quantitative risk metric exceeds a user-defined threshold value. 

At this point, a node-in-distress (NID) has been identified as the 

weak point of the securing structure around which the RSN is 

deployed. The NID can no longer be used with confidence and the 

effective perimeter coverage of the RSN has been reduced, thus 

creating potential security breaches in the area of interest. In 

response, the remaining nodes will self-organize to maximize the 

perimeter coverage while minimizing the cost of doing so. A 

limited set of contingency network topologies is produced via 

evolutionary multi-objective optimization using the Non-

Dominated Sorting Genetic Algorithm (NSGA-II) and then 

ranked according to a human-guided alternative selection 

algorithm.  The security operator picks the most suitable 

topology, which is then effectuated upon the environment. 

Results indicate that NSGA-II is capable of producing feasible 

network topologies to satisfy maximum perimeter coverage, while 

reducing the energy required for topology reconfiguration. As far 

as we are concerned, this is the first time a RSN applied to a CIP 

scenario is self-organized in response to a risk analysis conducted 

on every sensor node on the basis of multiple risk features. 

Keywords—robotic sensor networks; risk management; self-

organization; critical infrastructure protection; territorial security 

I.  INTRODUCTION 

Robot Sensor Networks (RSNs) [1] can be applied in the 
domain of Critical Infrastructure Protection (CIP). In such an 
application, a RSN is deployed to safe-guard some critical 
infrastructure (e.g., building, pipeline, etc.) in a secure and 
reliable fashion. The network would consist of a collection of 
mobile sensor nodes capable of perceiving different aspects 
about their environment. Unlike typical wireless sensor 
network nodes, RSN nodes are capable of moving which in 
turn allows the network to dynamically self-configure by 
adopting a different topology. A self-organizing network is 
very appropriate in CIP. Deployed sensor networks are subject 
to various forms of unavoidable risk, thus increasing the 
probability of sensor node failure and coverage gaps. Risk can 

arise in many fashions such as: low battery power, harsh 
environmental conditions, malicious attacks, terrain hostility, 
etc. Although a large body of research focuses on how to avoid 
these risks, an alternative proposed in [2] features how risk can 
be assessed, monitored and mitigated. A risk-aware RSN node 
can utilize all its sensing instruments and evaluate its total risk 
at any point in time. Raw sensor data feeds are turned into 
useful risk features, specifically degree of distress, intruder 
proximity risk, and terrain maneuverability risk, all enabling 
the sensor network to monitor the risk feature space. A node-
in-distress (NID) is identified (i.e., a sensor node whose risk 
value exceeds a certain threshold) and the network must 
explore a possible solution to assist such a node in imminent 
danger, as it may cause a coverage gap that increases the 
probability of undetected intrusions. In a RSN, a new topology 
can be computationally derived to meet the operational goals of 
the network. We model the discovery of a new network 
topology as a multi-objective optimization problem over a 
combinatorial search space. Good solutions are sought via the 
Non-dominated Sorting Genetic Algorithm II (NSGA-II) [3], 
which provides a set of mutually non-dominated candidate 
network topologies. To the best of our knowledge, this is the 
first paper that addresses self-reconfigurability issues in a RSN 
from a risk-aware perspective in a CIP scenario. 

The remainder of this paper has been structured as follows. 
Section II briefly touches on relevant works in the literature. 
Section III outlines the application of the risk management 
framework (RMF) to a self-organizing RSN in the CIP realm. 
Section IV elaborates on the NSGA-II configuration as part of 
the RMF’s response selection module. Section V sheds light on 
the empirical study whereas Section VI concludes the work. 

II. RELATED WORK 

This section briefly touches on some relevant works 
regarding CIP using wireless sensors technology with and 
without risk analysis. 

Coppolino et al [4] put forth a hybrid intrusion detection 
system (IDS) to protect critical information structures. The IDS 
regards sensors as the source and target of potential attacks and 
develops a two-tier solution to prevent sinkhole and sleep 
deprivation security breaches. Gomez and Ulmer [5] introduce 
a system prototype for stadium surveillance. Sensors detect 
dangerous crowd activities or situations and report alerts to a 
Command and Control (C2) centre, where a decision maker 
may choose to assign first responders and dispatch them to the 



incident scene. These works neither include risk analysis nor 
optimize the set of potential responses that will mitigate the 
risk condition. 

Aubert et al [6] and Schaberreiter et al [7] propose risk 
modeling approaches for critical infrastructures. The former 
aims at modeling the security properties of interdependent 
systems and measures their risk levels and assurances. The 
latter constructs the service decomposition graph for risk 
assessment and showcases an online monitoring tool of three 
risk parameters. Despite performing risk feature extraction and 
assessment, these frameworks do not embrace considering a set 
of prospective responses to be actuated upon the environment. 

Another loosely related group of studies optimize the sensor 
distribution either prior to or after deployment. Jin et al [8] 
employ a multi-objective differential evolution algorithm to 
derive sensor distributions over the monitoring region with 
maximum coverage and minimum overlap. Self-organization in 
cluster sensor networks after sensor failure is pursued via a 
local scheme in [9]. Intrusion detection in a mobile sensor 
network (MSN) is tackled in [10] by providing k-barrier 
coverage. 

Our work touches on the three aspects mentioned above 
and, to the best of our knowledge, is yet novel in itself. We 
pursue self-organization in a RSN that protects a critical 
infrastructure in a proactive and risk-aware fashion. The 
proposed approach is an extension of the work presented in [2] 
in which risk analysis drives the entire operation of a sensor 
and robot network for CIP. However, [2] was not concerned 
with eliciting a set of promising responses to counter the 
perceived threat in the network. The authors recently 
augmented their RMF in [11] with a response selection module 
that utilizes NSGA-II as a multi-objective optimization method 
to evolve a group of promising responses that could be actuated 
upon the environment. The framework was successfully tested 
in the context of maritime Search and Rescue operations.  

This paper applies the RMF to a CIP scenario similar to the 
one in [2]. As far as we are concerned, this is the first time a 
RSN is self-organized in response to a risk analysis conducted 
on every sensor node on the basis of multiple risk features. 

III. RISK-AWARE ROBOTIC SENSOR NETWORKS 

The proposed RSN is risk-aware, meaning that it is capable 

of evaluating the risk of each individual node and flag some of 

them as NIDs. Raw sensor data are transformed into risk 

features through the Risk Feature Extraction module of the 

RMF in [1]. The three risk features selected for this 

application are the following: degree of distress, intruder 

proximity risk and terrain maneuverability risk.  

Degree of Distress: 

This risk feature models the node’s current battery level as 

a fuzzy set 𝜇𝐷𝐷(𝑥𝑏𝑎𝑡𝑡𝑒𝑟𝑦) . With the following triangular 

membership function: A=0, B=0, C=100.  

Intruder Proximity Risk: 

The proximity of detections by the sensor node can contribute 

to the overall risk of the sensor unit. An equipped laser range 

finder (LRF) provides depth perception to the sensor node. If 

we consider xdetection to be the distance (in m) to the nearest 

LRF-detected intruder, then 𝜇𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦(𝑥𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛) is the fuzzy 

set modeling the object proximity risk. This fuzzy set uses a 

trapezoidal membership function with parameters A=0, B=0, 

C=1, and D=3.5;  

Terrain Maneuverability Risk: 

This risk feature is a nominal risk feature, which provides 

a terrain maneuverability metric given some localization 

context. The risk metric can be configured manually as 

appropriate for the deployment environment, or in the case of 

this paper, a random real value between 0.0 and 1.0 Future 

work will allow sensor nodes to update the KB from sensor 

percepts. That being said, the terrain information can be 

queried from the KB by providing the sensor’s Cartesian 

coordinates, 𝑃𝑛𝑜𝑑𝑒
𝑖 (𝑝𝑥

𝑖 , 𝑝𝑦
𝑖 , 𝑝𝑧

𝑖 ) . Localization information can 

be provided by either a Global Positioning System (GPS) 

module or any other localization algorithm. The terrain 

maneuverability risk values are normalized between 0.0 (no 

terrain risk) and 1.0 (highest terrain risk). 

 

The RMF’s Risk Assessment module considers these risk 

features to produce an overall risk metric for the sensor unit. 

We have followed the same evaluation scheme used in [2]. A 

user-defined risk threshold is compared against the overall risk 

of each sensor node in the network. Units exceeding the risk 

threshold are marked as NIDs, which represent a network 

vulnerabilities. This triggers the invocation of the RMF’s 

Response Selection module so as to determine a new feasible 

network topology to mitigate the threat. The response 

selection process is explained in the next section. 

IV. RISK-DRIVEN SELF-ORGANIZATION IN A RSN 

Each candidate response topology is evaluated according 

to two different (and conflicting) objectives: 

 F1 = Total Perimeter Coverage: The total area (in %) 

of the critical infrastructure covered by the RSN. 

 F2 = Total Mobilization Cost: The total cost (in %) of 

mobilizing the nodes to their target locations. 

 

An optimal solution is one that maximizes F1 and 

minimizes F2. Often, in a multi-objective optimization 

problem we run into a set of mutually non-dominated 

solutions (meaning that none is superior to the others). NSGA-

II [3] is a well-known algorithm that efficiently produces a 

good spread of Pareto-optimal (i.e. non-dominated) solutions. 

The NSGA-II optimization algorithm, will maintain a Pareto 

Archive Set (PAS) over each generation. In the following, the 

NSGA-II’s configuration for the problem under consideration 

is unfolded. 

A. Algorithm Configuration 

Once a NID is elicited by the RMF’s Risk Assessment 
module, a snapshot of the network’s current state is acquired 
and becomes the starting point for the self-organization phase. 
To begin exploring the solution space for new network 



topologies, the following information must be retrieved/derived 
from the RSN: 

1. Sensor Node State, Φ𝑛𝑜𝑑𝑒
𝑖 (𝑡),𝑖 = 1. . 𝑁𝑎  

2. Sensor Node Response Regions, Ω𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
𝑖  

3. Security Perimeter Contour, 𝒄𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 

1) Sensor Node State 

The 𝑁𝑎  sensor nodes are represented at time 𝑡  by a simple 

model: 

 

Φ𝑛𝑜𝑑𝑒
𝑖 (𝑡) = [

𝑥𝑏𝑎𝑡𝑡𝑒𝑟𝑦
1 (𝑡) 𝑃𝑛𝑜𝑑𝑒

1 (𝑡)

⋮ ⋮

𝑥𝑏𝑎𝑡𝑡𝑒𝑟𝑦
𝑁𝑎 (𝑡) 𝑃𝑛𝑜𝑑𝑒

𝑁𝑎 (𝑡)
] (1) 

 

The simulated battery level on board each node is provided 

as a percentage quantity. A constant discharge rate 𝛾𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒  

(in %) occurs for a deployed sensor node. A power 

consumption rate of 𝛾𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡  (in % per meter travelled) is 

used during sensor locomotion. Let Φ𝑛𝑒𝑡𝑤𝑜𝑟𝑘(𝑡) be the state 

of the network at time t.  

 

Φ𝑛𝑒𝑡𝑤𝑜𝑟𝑘(𝑡) = [Φ𝑛𝑜𝑑𝑒
1 (𝑡) ⋯ Φ𝑛𝑜𝑑𝑒

𝑁𝑎 (𝑡)] (2) 

 

 A detected NID will trigger a snapshot, which captures the 

network state Φ𝑛𝑒𝑡𝑤𝑜𝑟𝑘(𝑡𝑁𝐼𝐷) = Φ𝑛𝑒𝑡𝑤𝑜𝑟𝑘
𝑁𝐼𝐷 . This state will 

simply contain the set of battery levels and the set of locations 

of each sensor node required for algorithm configuration. The 

state of each sensor node is crucial for the next steps of the 

algorithm configuration. 

2) Sensor Node Response Region 

A response region is assigned to each sensor node 

potentially involved in the response (new topology). A 

response region is defined as the area that contains a possible 

target location for a sensor node. The region itself is circular 

and defined by a center and a radius. The center of the region 

is set to the sensor node’s current location whereas the radius 

(𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
𝑖 ) is a function of battery level (𝑥𝑏𝑎𝑡𝑡𝑒𝑟𝑦

𝑖 ), distance to 

the NID (𝑑𝑁𝐼𝐷
𝑖 ), and battery level threshold (𝜆𝑏𝑎𝑡𝑡𝑒𝑟𝑦). The 

available battery power on the sensor node is a constraint on 

the maximum distance travelled. The battery level threshold is 

the minimum battery level necessary to engage the robotic 

platforms that are carrying the sensors in differential drive 

operations. Thus, the maximum response ring radius is:   

 

𝑅𝑚𝑎𝑥
𝑖 = {

0 𝑥𝑏𝑎𝑡𝑡𝑒𝑟𝑦
𝑖 <  𝜆𝑏𝑎𝑡𝑡𝑒𝑟𝑦

𝑥𝑏𝑎𝑡𝑡𝑒𝑟𝑦
𝑖 −  𝜆𝑏𝑎𝑡𝑡𝑒𝑟𝑦

𝛾𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(3) 

 

This is the maximum change in position possible without 

depleting the battery below the 𝜆𝑏𝑎𝑡𝑡𝑒𝑟𝑦  level. The response 

radius is valid on the interval 0 ≤ 𝑅𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
𝑖 ≤ 𝑅𝑚𝑎𝑥

𝑖 . The 

radius of the response region is defined in (4) using a 

combination of the maximum response radius and a 

monotonically decreasing exponential function of the distance 

from the NID. A value of 𝛽=0.45 was experimentally chosen 

to as a decay rate for the exponential function (shown in 

Figure 1), which produced desirable results.  

 

𝑅𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
𝑖 = 𝑅𝑚𝑎𝑥

𝑖 ∗ 𝑒
−

𝑑𝑁𝐼𝐷
𝑖

𝛽  (4) 

 

So, we can define the response vector as in (5): 

 

𝛀𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
𝑖 = [𝑃𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒

𝑖 𝑅𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
𝑖 ] (5) 

 

 
Fig. 1 Response region radius calculation. An exponential 

relationship (𝑒
−

𝑑𝑁𝐼𝐷
𝑖

𝛽 ) is defined between 𝑅𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
𝑖  and 𝑑𝑁𝐼𝐷

𝑖 . 

𝛽 = 0.45 

 

Each sensor node is equipped with multiple sensors 

mounted on a differential drive robotic platform. Given a 

target location, a displacement vector for the sensor node can 

be calculated. A set of target locations are generated for each 

sensor node if ( 𝑅𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
𝑖 > 0). Let the set of target locations 

be: 

  

𝑺𝑡𝑎𝑟𝑔𝑒𝑡𝑗

𝑖 = {
(𝑟𝑡𝑗

1 cos (𝜃𝑡𝑗
1 ) , 𝑟𝑡𝑗

1 sin (𝜃𝑡𝑗
1 )) , … ,

(𝑟𝑡𝑗

𝑁𝑡 cos (𝜃𝑡𝑗

𝑁𝑡) , 𝑟𝑡𝑗

𝑁𝑡 sin (𝜃𝑡𝑗

𝑁𝑡)) 
} 

 

Where 𝑟𝑡𝑗

𝑖 ~𝑈(0, 𝑅𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
𝑖 )  and 𝜃𝑡𝑗

𝑖 ~𝑈(0, 2𝜋) . 𝑈(𝑎, 𝑏)  is a 

uniform distribution between a and b. Let C represent the 

algorithm’s initialization matrix defined as in (6): 

 

𝑪 = [

𝛀𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
1 𝑃𝑛𝑜𝑑𝑒

1 𝑺𝑡𝑎𝑟𝑔𝑒𝑡
1

⋮ ⋮ ⋮
𝛀𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒

𝑁 𝑃𝑛𝑜𝑑𝑒
𝑁 𝑺𝑡𝑎𝑟𝑔𝑒𝑡

𝑁
]  (6) 

 

3) Sensor Network Coverage Objective 

Sensor network coverage represents the extent of the 

security perimeter that can be surveyed by the sensor nodes. 

The perimeter is represented by a contour csecurity around the 

critical infrastructure. The RSN must have near-complete 

coverage of this contour to succeed in detecting any intrusion 

attempts. Each sensor node in the RSN will contribute to the 

perimeter coverage by intersecting the sensor node’s field of 

view with the entire contour or a segment of the contour. For 

computational purposes, let the contour be a set of perimeter 



points uniformly distributed on the contour, 𝑃𝑠
𝑘(𝑥𝑠

𝑘, 𝑦𝑠
𝑘 , 𝑧𝑠

𝑘) , 

where k=1..K represents the index of the perimeter point. 

 

Let the field of view radius for the ith sensor be 𝑟𝑓𝑜𝑣
𝑖 . By 

evaluating the distance between the sensor node’s position and 

each discrete contour point, a node will have a contour point 

surveyed if and only if (𝑃𝑠
𝑘 − 𝑃𝑛𝑜𝑑𝑒

𝑖 ) ≤ 𝑓𝑓𝑜𝑣
𝑖 . The coverage of 

the security perimeter is the ratio of the number of perimeter 

points covered to the total number of perimeter points. NSGA-

II will seek topology solutions which produce large perimeter 

coverage values. Coverage gaps (i.e. lower perimeter coverage 

values) must be avoided to reduce undetected intrusions. 

4) Energy Cost Objective 

The power required to execute a topological change must 

be minimized when exploring the search space for candidate 

solutions. Given 𝛾𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 (power consumption % per meter 

travelled), the total power required by the RSN to self-

organize into the new topology can be estimated by (9): 

 

𝐶𝑜𝑠𝑡 = ∑ 𝑑𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
𝑖𝑁

𝑖=1 ∗ 𝛾𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 (8) 

 

5) Algorithm Stop Criteria 

The stopping criterion for the optimization algorithm is 

based on the algorithm’s runtime 𝜉𝑟𝑢𝑛𝑡𝑖𝑚𝑒(in sec.).  

B. Chromosome Design 

A chromosome in our NSGA-II implementation represents 
a possible solution to the RSN self-organization problem. Each 
node’s response region will consist of 𝑁𝑡  possible target 

locations. Let 𝛼𝑡𝑗

𝑖  be the index of the jth target point for the ith 

node in the RSN. 𝛼𝑡𝑗

𝑖 ∈ ℤ and can be a value on the interval of -

1 to (𝑁𝑡 − 1). The index value of -1 indicates that the asset is 
not used in the solution. Each chromosome can then be 
represented by the following vector: 

𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 = [𝛼𝑡𝑗
1 𝛼𝑡𝑗

2 ⋯ 𝛼𝑡𝑗

𝑁𝑎]  (9) 

A chromosome is a set of target location indices, one for 
each RSN node. The initial chromosome population in NSGA-
II is randomly initialized using a uniform distribution in the 
specified range. Each node involved in the solution will be 
assigned a random index.  

C. Crossover and Mutation  

We implement uniform crossover with probability 

𝑝𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 . When two parent chromosomes are selected from 

the population to crossover, genes are randomly chosen from 

either parent.  

During a mutation operation, all chromosomes in NSGA-

II’s extended population are investigated. For a given 

chromosome, the probability of a gene value being mutated is 

𝑝𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛. The algorithm will iterate through each gene value 

if the gene is to be mutated then a new random value in the 

range [0; 𝑁𝑡 − 1] is selected to replace the existing one. 

V. EXPERIMENTAL RESULTS 

A set of experiments using Microsoft Robotics Developer 
Studio (MRDS)[12] have been created to simulate a RSN 

deployed in an outdoor CIP scenario in a secluded area. Sensor 
nodes are shown as white rectangular units forming a perimeter 
around the building (i.e., critical infrastructure).  

A total of seven sensor nodes are used in this experiment to 
form a secure perimeter around the building. The sensor node 
resides on a simple differential drive robotic platform and 
produces raw sensor data from a GPS, an electronic compass, 
and a laser range finder. The laser range finder equips the node 
with a sensor field of view (FOV) capable of detecting 
intrusions on the security perimeter. The FOV is modeled as a 
circular region with a sensing radius of 3.5 m.  

 

Fig. 2  A 2-D graphical representation of the 20.0 m (along 

x) by 22.5 m (along y) simulation environment. The red 

rectangle is the critical infrastructure. The dashed contour 

around the critical infrastructure represents the security 

perimeter. Dots encapsulated by circular regions are the sensor 

nodes and sensor FOVs. 

 

The shape of the security perimeter is defined by an ellipse 

centered at the position of the building. The semi-major axis 

(along x-axis) is 5.42 m and the semi-minor axis (along z-axis) 

is 9.01 m. The elliptical contour is discretized into 200 points. 

Figure 2 shows a 2-dimensional representation of the scenario 

including additional visual entities to help visualize sensor 

FOVs and the elliptical security perimeter. 

 

Table I outlines the initial conditions for the simulation. 

depicted in Figure 2.  

TABLE I.  SIMULATION INITIAL STATE 

Simulation Initial State, S[t0] 

Sensor Nodes 

Asset,i Pinitial(x, z)[m] 
xbattery 

(%) 
𝒇𝒇𝒐𝒗

𝒊  [m] 

1 (12.8, -12.4) 30 3.5 

2 (10.8, -17.8) 70 3.5 

3 (11.9, -24.2) 80 3.5 

4 (16.8, -26.6) 86 3.5 

5 (20.4, -22.4) 86 3.5 

Sensor Field of View 

Security Perimeter 

Critical Infrastructure 

Robotic Mobile Node 



Simulation Initial State, S[t0] 

Sensor Nodes 

Asset,i Pinitial(x, z)[m] 
xbattery 

(%) 
𝒇𝒇𝒐𝒗

𝒊  [m] 

6 (21.2, -17.1) 86 3.5 

7 (18.5, -12.2) 86 3.5 

 

To detect a NID in the RSN, raw data streams from sensor 

nodes are used to extract the three risk features outlined in 

Section III. Risk Assessment. 

 

During the course of the simulation, mobile sensor 1 

becomes the NID as its overall risk is 0.73; this is attributed to 

the “degree of distress” risk feature as this node was deployed 

in the monitoring region with a battery level of 30%. After the 

identification of the NID, the NSGA-II optimization algorithm 

can proceed to initialize the population once the following 

information is calculated: the distances to the NID from each 

node; the set of response regions for each node; the target 

locations for each node 

 

The set of distances of each sensor node’s location to the 

location of the NID can be quickly computed by: 

 

𝑑𝑁𝐼𝐷 = √(𝑃𝑥
𝑛𝑜𝑑𝑒 − 𝑃𝑥

𝑁𝐼𝐷)2 + (𝑃𝑦
𝑛𝑜𝑑𝑒 − 𝑃𝑦

𝑁𝐼𝐷)
2
 (10) 

 

The response region is a function of both the battery power 

available on the node and the distance from the node to the 

NID. Evaluating equation (4), given that 𝛽 = 0.45, 𝜆𝑏𝑎𝑡𝑡𝑒𝑟𝑦 =

0.30, and 𝛾𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = 0.05 for each node, produces a set of 

response regions. The center of each response region 𝑃𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
𝑖  

is set to the location of the assets from the initial conditions 

(Table 1). The response region radii are described in Table IV. 

TABLE II.  RESPONSE REGION RADII 

Response Region Radii, 𝑅𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
𝑖  (m) 

Node 1 2 3 4 5 6 7 
Value  3.00 1.54 1.13 1.58 2.48 4.48 

 

A set of target points are generated 𝑺𝑡𝑎𝑟𝑔𝑒𝑡𝑗

𝑖  for 0 ≤ 𝑗 ≤

𝑁𝑡 , 𝑁𝑡 = 200 . With target locations for each node, the 
chromosome population can be initialized. A population size of 
100 chromosomes, 𝑝𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 = 0.8, and 𝑝𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 = 0.1 were 
used. The optimization runs until the stop criterion is satisfied, 
which in this case is a runtime of 120 seconds. The NSGA-II 
parameters of [11] were used as starting point, but were 
adjusted through experimentation to achieve desirable results. 

 

Fig. 3 Plots of the first three Pareto Fronts are displayed in 
ascending order from green, red, and blue. The remaining 
solutions (front > 4) are plotted as blue scatter points. 

 The Pareto Fronts from the PAS are displayed in Figure 3 
to paint a clear picture of the non-dominated solutions 
discovered in the solution space. The first front indicates the 
truly non-dominated solutions discovered in the search space. 
The maximum coverage and minimum energy objective 
functions share equal weighting in the optimization by NSGA-
II. It is due to this that extreme solutions are presented with 
poor coverage but with minimal energy cost along with others 
that present excellent coverage combined with very high 
energy cost values. Figure 4 shows a subset of the total set of 
optimized solutions. It can be observed that solutions are well 
spread across the Pareto front which confirms NSGA-II’s 
ability to obtain such a uniform distribution of the solutions. 

 

Fig. 4 Response Selection form displaying a list of 
optimized solutions. 

It is up to a decision maker to select a feasible response for 
this RSN. Figure 5 depicts the resulting topology when 
selecting network response 5, which provides an appropriate 
tradeoff between coverage and energy usage. Conversely, 
network response 17 provides the maximum perimeter 
coverage (95.5%), but with the use of significant energy 
(39.7%).  
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Fig. 5  (left) A 2-D graphical representation of the network 
response 15. The original and final sensor locations are shown. 
New sensor FOVs are displayed as the red circular regions. 
(right) A 3-D graphical view of the response network. Red dots 
denote the new node locations. White dots indicate the original 
node location. 

Network response 5 provides a coverage metric of 92.0% 
(a loss of -3.5% from response 17); however it can be achieved 
using 27.5% (savings of 13.8% from response 17) energy 
collectively from the network. A decision maker will likely 
choose a response that leans towards high coverage but with 
the energy cost minimized (i.e., select network response 5 
instead of 17). 

The algorithm was also tested on a simulated RSN of 47 
robotic nodes, protecting a large L-shaped perimeter. After an 
optimization time of 120 seconds, the PAS contains four 
solutions. The initial coverage for the network is 99% and the 
NID causes a coverage gap of 2.23 m thus reducing the 
perimeter coverage to 97%.  Figure 6 depicts the optimized 
solution with maximum perimeter coverage of 99.2% and a 
collective energy consumption of 1.58%.  

 

 

 

Fig. 6 (left) A 2-D graphical representation of the network 
response for maximum coverage. The original and final sensor 
locations are shown. New sensor FOVs are shown as the red 
circular regions. (right) A 3-D graphical view of the response 
network. Red dots denote the new node locations. White dots 
indicate the original node locations. 

VI. CONCLUSIONS 

It is impossible to escape the various risks associated with 
the operation of a RSN in any environment. The use of a risk-
aware RSN grants a new level of perception to anticipate the 
failure of any given sensor node. In this paper, a simulated 
RSN was applied to critical infrastructure protection. The 
deployment goals of the network are: to maintain maximum 
perimeter coverage and to stay operational for as long as 
possible. In the event of the presence of a NID, the network is 

subject to a coverage gap; dramatically increasing the risk of 
undetected intrusion of the secure perimeter. Through multi-
objective optimization with the NSGA-II it is possible to obtain 
a new network topology for the RSN that maximizes sensor 
coverage while balancing energy cost. The current work is 
limited to a single response for mitigating risk. Future work 
will introduce multiple detected NIDs and the mitigation of the 
induced risk using simultaneous network responses. In this 
research we hope to develop a more robust risk-aware RSN. 
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