
1556-603X/10/$26.00©2010IEEE FEBRUARY 2011 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 55

Michael Margaliot
Tel Aviv University, Israel

Rami Abielmona
Larus Technologies, CANADA

Emil M. Petriu
University of Ottawa, CANADA

Moufid Harb
Larus Technologies, CANADA

Slawo Wesolkowski
DRDC CORA, CANADA

Abstract–Territorial security deals with the prevention,
detection and response to unauthorized persons and/or
goods from crossing a perimeter. It deals with large territo-
ries of strategic importance, such as international borders,
transportation and critical infrastructure. Multi-agent systems
provide flexibility, fault-tolerance, high sensing fidelity, low-
cost and rapid deployment. In this paper, we concentrate on
the challenges presented in applying the concepts of multi-
agent systems to those presented by territorial security. We
first introduce the overall system as well as prevalent agent
architectures. We then briefly present our novel agent archi-
tecture, its experimental embodiment and the virtualized
reality model that accepts physical sensor data and updates a
global model of the environment in real-time.

© BRAND X PICTURES

I. Introduction

P reventing, detecting, and responding to unauthorized

persons and/or goods crossing a perimeter is a security

concern of individual, corporate, and international

scope. State-of-the-art perimeter-security solutions use

physical barriers, sensors (indoor motion, cameras, audio/vibra-

tion), and human personnel (a camera operator, entrance guard,

and patrolling security guards). These procedures are effective

in a limited scenario, where a few entrance points are con-

strained by well-delineated physical boundaries.

Territorial security, however, deals with large territories of stra-

tegic importance, such as international borders, transportation

(airports, rail yards, public transit), and critical infrastructure (mili-

tary bases, nuclear facilities, emergency services, etc.) [1]. When

trying to monitor such large geographically-distributed

Mi ssion-Driven Robotic
Intelligent Sensor Agents

for Territorial Security

Digital Object Identifier 10.1109/MCI.2010.939580

 Date of publication: 17 January 2011

1556-603X/11/$26.00©2011IEEE FEBRUARY 2011 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 55

56 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | FEBRUARY 2011

 infrastructure, a number of challenges present themselves. First, a

linked network of this size is inflexible and expensive to setup.

Second, security operators frequently suffer from overload, stress,

and inattention due to the substantial influx of data. Finally, it is

increasingly important for territorial security systems to allow for

the sharing of knowledge to specified entities [2].

The complexity of securing an unpredictable and continu-

ously changing natural environment is a function of the nature,

number, and characteristics of the parameters of interest and of

the desired measurement data properties. The types of sensors,

their number and their bandwidth, their deployment in the

field, the expected performance levels of the sensor data acquisi-

tion system and of the data communication network are all

requirements that have to be considered when designing a multi-

agent system [3] for territorial security. Additionally, in order to

avoid wasting the limited power resources, the

agents should have a selective perception capa-

bility focusing only on the parameters that are

of interest for the specific securing task. Spe-

cially designed sensor planning strategies are

used to place the fixed and mobile sensor

agents in such a way as to get optimum performance during

specific tasks and for the real-time selection of sensing opera-

tions to minimize the observed system entropy [4].

A multi-agent system (MAS) is one where individual

agents coordinate their activities and cooperate with each

other, to avoid duplication of effort and to exploit other

agents’ capabilities [3]. Multi-agent systems have been pro-

posed and implemented for use in distributed sensing and

information retrieval and management [5]. A Distributed intelli-

gent sensor system (DISS) [6] was developed to integrate robotic

intelligent sensor agents (ISAs), the wireless communications

network, as well as the virtualized reality model of the environment

(VRME). ISAs could either be mobile (mISAs) or stationary

(sISAs). The virtualized reality concept introduced by Kanade

et al. [7] represents an extension of the typically computer-

generated, but synthetic virtual reality

concept. VRME integrates natural envi-

ronment information captured by the

ISAs in the field. DISS’ design require-

ments are broken up into five major cat-

egories (refer to Figure 1):

1) Distributed agent-based resource
management: This framework pro-

vides a flexible, extensible and open

mechanism allowing for agent

interoperability. Work has already

been completed on such a framework

[8], that assumes a limited amount of

computational and communication

resources on each ISA;

2) Local intelligence: A reactive-

behavior paradigm [9] has been

investigated and implemented in

[10]. The agent reacts to sensory

inputs from its environment, by actu-

ating upon the latter, without rea-

soning about the performed actions.

A novel retroactive agent architecture has

been devised and tested in experi-

mental scenarios and will be present-

ed in this article;

3) Network intelligence: Since all

our ISAs are instinctive information

seeking agents, some of them will

cooperate together towards the

achievement of the overall goal, that

is to maximize the information

acquired from the environment

about objects or events;F IGURE 1 DISS flow diagram.

Distributed Agent-Based Management (1)

Agent

1

Agent

2

Agent

4

Agent

3

Agent

5

Agent

n

LI (2)

R-ISA Real-World Environment

LI–Local Intelligence

NI–Network Intelligence

Ethernet Access Points (EAPs)

Wireless Communication Network (InterRCom) (4)

Multi-Sensor Fusion (Centralized and Decentralized) (5)

Virtualized Reality Model of the Environment (VRME)

Ethernet (802.3)

NI (3)

Territorial security deals with large territories of
strategic importance, such as international borders,
transportation, and critical infrastructure.

FEBRUARY 2011 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 57

1) Wireless communication: A network

protocol, referred to as Intelligent Robotic

Communication (InteRCom), has been

devised to allow for the efficient utiliza-

tion of the available wireless channels;

and

2) Multi-sensor fusion: This mechanism

is used to integrate heterogeneous sen-

sory data into a composite and coherent model of the

environment. As human beings are valuable partners to

the ISAs to the degree that their capabilities comple-

ment those of the ISAs, the VRME should allow the

human operators to feel their own sense of vision, hear-

ing, smell, taste and touch. The latter can be accom-

plished by forcing a direct feeling of the contact

phenomena that a specific ISA experiences while in the

field [7]. However, we currently only support sensory

feedback to a workstation VRME. In the future, head-

mounted displays and haptic feedback gloves will allow

the human monitors to incrementally immerse them-

selves into the VRME.

Abielmona et al. have previously described an environment

mapping method called Tree-In-Motion Mapping (TIMM) that

combines environment mapping through entropy reduction

with a quadtree-based data structure to present a multi-

resolution and multi-dimensional view of the environment [6].

The method, which integrates simplicity and speed of compu-

tation, as well as low storage and communications require-

ments, is ideal for the targeted platform of fixed and mobile

agents. This article will concentrate on the local intelligence

and the VRME.

II. State of the Art
As aforementioned, a MAS provides an effective solution to

distributed sensing applications. Shown in Table 1 is a com-

parison of the relevant MAS implementations, including

their agent architecture (AA) (i.e., R is a reactive one, P is a

proactive one, and H is a hybrid one), and the system’s most

prevalent pros and cons. In comparison with the systems pre-

sented above, DISS possesses a hybrid agent architecture, as

both reactive and retroactive agent architectures are utilized,

that provides system flexibility in choosing the best

 architecture for particular applications. DISS clearly outlines

a communications protocol that allows for the agents to

communicate with system access points, as well as with each

other. The communication of incomplete results is performed

through a blackboard architecture, the latter being a major

component in synthesizing the global map from local

 incomplete ones.

The agents are hardware independent, as the entire sys-

tem was specified using a hybrid formal specification lan-

guage, allowing for a level of abstraction that does not

constrain the designer to a particular architecture. This has

been demonstrated by the realization of three different

design implementations of the physical agents: a purely soft-

ware spin running on a microcontroller, a hardware/software

spin running on a programmable device (e.g. FPGA) and an

off-chip microcontroller, and finally, a hardware/software co-

design running on a programmable device and an on-chip,

soft-core microprocessor. Finally, DISS presents separate sim-

ulation and virtualization engines. The simulation engine

allows the user to simulate MAS-based scenarios to optimize

design factors while extracting environmental parameters.

Once the system has been optimized and realized, a separate

virtualization engine is used to seamlessly immerse the

remote user into the MAS environment, even across the

Internet, if required.

After reviewing the advantages and disadvantages of previ-

ous and related solutions, it was concluded that success within

an MAS was mainly achieved due to blackboard-based knowl-

edge sharing, odometric error correction, simulation engine

presence, and real-time mapping representation and searching

techniques [14]. Conversely, it was found that problems with

scalability, robustness and emergent behaviors resulted mainly

from static agent organizations, customized agent designs,

homogeneous agent architectures and incomplete results com-

munications [14].

TABLE 1 Comparison of MASes.

AUTHORS AA ADVANTAGES DISADVANTAGES
LESSER AND ERMAN [11] H FOUNDATIONAL WORK IN DAI

TWO-TIERED BLACKBOARD ARCHITECTURE
ROBUST AND FAULT-TOLERANT SYSTEM

PRE-DESIGNED (STATIC) AGENT ORGANIZATIONS
IMPRACTICALITY OF COMMUNICATING INCOMPLETE
RESULTS
HOMOGENEOUS AAS A HINDRANCE

PAULY AND KRAISS [12] H SUCCESSFUL QUADTREE AND AA* COMBINATION
EKF AIDS IN REDUCING ODOMETRIC ERRORS
HYBRID AND FLEXIBLE AA

OVERBURDENING CUSTOMIZATION IN THE DESIGN OF
AGENTS
LACK OF EXPLICIT COMMUNICATIONS DETAILS
HARDWARE-DEPENDENT AGENTS

DUDENHOEFFER
AND BRUEMMER [13]

R ROBUST SIMULATION ENGINE IN SIMAGENT
SOLID SOCIAL POTENTIAL FIELDS METHOD
ONLINE LEARNING RESOLVED

CRUDE ROBOTIC POSE
NO SOLUTION TO RECURSIVE OR OMISSIVE SENSING
REACTIVE AA A DETRIMENT

The communication of incomplete results is
performed through a blackboard architecture, the
latter being a major component in synthesizing the
global map from local incomplete ones.

58 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | FEBRUARY 2011

III. Agent Architectures
Agent architectures define the approach that one takes in the

building of intelligent systems, including the internal structure

and operation of the agent. They are typically divided into

logic-based, reactive, belief-desire-intention and layered archi-

tectures. However, a more concrete division outlines proactive,

reactive and hybrid agent architectures. Proactive agent archi-

tectures are intuitive and easily decompose into subsystems;

however, they suffer from the problem of calculative rationality

and are usually difficult to realize [9]. Reactive agent architec-

tures are simple, economical and computationally tractable;

however they suffer from the problem of a short-term view

and are usually difficult to implement if they contain many

layers. Hybrid agent architectures are either horizontally-or

vertically-layered, and combine advantages from both proac-

tive and reactive architectures; however, they suffer from other

problems, such as the absence of a semantic or conceptual

clarity and the difficulty of inter-layer interactions. Other

techniques involving the evolution of the agent’s architecture

[15] are outside the scope of this article.

A. Proactive Architecture
Figure 2 describes the typical proactive agent architecture [16]

used for most of the robotic architectures synthesized in the

1980s, and still in use today; there are at

least four major functional units that a

robotic agent has to execute to respond to

environmental events through the manipu-

lation of one or more of its actuators. This

model has shown conditional success in

structured environments; however, it is not

very reliable in hostile environments [17].

To achieve a level of autonomy capable of existing in an

unstructured environment, different agent architectures have

to be utilized. Hence, proactive architectures provision for a

deterministic traversal of the world, but suffer from prob-

lems such as calculative rationality and complex mapping

functions [9].

A proactive architecture can be formalized as the following

infinite loop:

proactive = perceive S model S plan S act S proactive

B. Reactive Architecture
Starting with Brooks’ now famous paper [9], it has been

shown that the problem of calculative rationality, present in

the proactive architectures, where the decision making

apparatus will suggest an action that was optimal when the

decision making process began, is a major drawback to pro-

active agent architectures. This problem, along with many

others (e.g. knowledge representation complexity, slow

search and planning phases, and inherently sequential opera-

tion), forced robotics researchers into devising faster, simpler

and more economical solutions for autonomous robotic

control. Behavior-based architectures, better known as reac-

tive agent architectures [16] (shown in Figure 3), were the

result of such endeavors, and have led to a revolution in the

design of robotic controllers. Reactive architectures are ele-

gant, robust against failure and computationally tractable.

They are based on three key Brooksian principles: situated-

ness, which allows for a timely response to world events

since the model consists of a direct connection from per-

ception to actuation, embodiment, which is the physical

grounding of the robot in the real world giving meaning to

the internal symbolic system, and emergence, which allows for

insect-like intelligence through the interactions of simpler

components of the system.

Over time though, it became apparent that reactive archi-

tectures were not the generic solution to autonomous robotic

control since there were just too many unforeseen drawbacks

[16]. First of all, robots needed more information to make a

decision due to the lack of internal work models. Second, it

was not very clear how these entities can learn from

 experience, to improve their performance over time. Third, and

most important, robots built using this architecture suffered

from a short-term view, in that each decision was based on the

current state only.

A reactive architecture can be formalized as the following

infinite computational loop:

reactive = perceive S act S reactive.

Sensor

Inputs

Sensor

Interpretation

World

Modeling
Planning Execution

Actuator

Outputs

FIGURE 2 Pro active agent architecture.

FIGURE 3 Reactive agent architecture.

Sensor

Inputs

Actuator

Outputs

Behavior l

Behavior n

. . .

In a retroactive architecture, an event in the
environment occurs, causing momentum in a behavior
to increase, eventually causing that behavior to fire and
react to the event by executing the behavior’s plan.

FEBRUARY 2011 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 59

C. Hybrid Architecture
Due to the aforementioned hindrances, researchers began

combining the two extremes into 3-layer systems (reactive

near the bottom, proactive near the top and an intermediate

layer connecting the two), that have been dubbed hybrid agent

architecture [16]. Today, they are the most popular [18] class of

robotic agent architectures due to their natural decomposition

of functionality into the individual reactive, proactive or

abstract layers. Two types of hybrid architectures exist, one

with horizontal layering and the other with vertical layering.

The former has each layer connected to the sensors and actua-

tors, with a mediator deciding which layer has control over the

body at any time, while the latter has a one or two-pass orga-

nizational scheme where information and command both flow

upwards (one-pass) or information flows upwards and com-

mands flow downwards (two-pass). Vertically layered hybrid

agent architectures suffer from a loss of flexibility and weak

fault-tolerance, whilst horizontally-layered hybrid agent archi-

tectures suffer from complex mediation modules in the case of

real-world robots.

D. Retroactive Architecture
We now take a look at a novel agent architecture that combines

both proactive and reactive characteristics. In a retroactive architec-

ture, an event in the environment occurs, causing momentum in

a behavior to increase, eventually causing that behavior to fire and

react to the event by executing the behavior’s plan. The events of

importance are changes in the perceived world attributes that the

mind is concerned with; i.e., ones that conflict with its world

goals. The reactive characteristic of this architecture involves pre-

cisely knowing which behavior to fire through momentum resolu-

tion, while the proactive characteristic of this architecture involves

precisely knowing how to behave through plan execution. Figure 4

depicts the retroactive agent architecture, which augments both

Actuator Outputs

Mind Outputs

Perception

Action

Expectation
World

Modelling

Validity

Sensor

Inputs

Mind

Inputs

FIGURE 4 Retroacti ve agent architecture.

Actuators

Action
Reconfigurable

Subsumption

Architecture

Sensor Processing

Architecture

Sensor

Data
Sensor

Data

Filtered Config.

Parameters

World

Perception Expectation

Deliberation

Architecture

Sensor Fusion

Architecture

Assertions

Reass
erti

on

Retroaction

Mind

Data

Mind

Validation

Proaction

Proassertion

Reacti
on

Retroassertion

F
ire

d
 B

e
h
a
v
io

rs

FIGURE 5 Retroactiv e agent architecture—synaptic acts.

60 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | FEBRUARY 2011

reactive and proactive architectures, through its validation block

by feeding back into the mind and predicting the next event that

will occur, based on previous experiences.

The retroactive agent architecture builds

on the importance of synaptic feedback,

where, for example, every sensed event elicits

a reaction by the agent onto the world to

handle the event, a retroassertion (i.e., future

validation) onto the agent’s mind to compartmentalize the

new or old data, and subsequently a possible proaction onto

the world again to seek more information about the event.

The authors have identified six synaptic acts, namely reactions,

proactions, retroactions, reassertions, proassertions and retroas-

sertions, which if observed from the outside, ascribe intelli-

gent behavior to machines. To better visualize the synaptic

acts, the reader is pointed towards Figure 5. A retroactive

architecture allows an autonomous robot to learn over time,

solving the short-term view of reactive systems, and to

respond in real-time to world events, solving the calculative

rationality of proactive systems.

A retroactive architecture can be formalized as the follow-

ing infinite loops:

retroactive = React i Proact i Retroact

React = Perceive S Act S React

Proact = (Perceive S Expect) S Model S Act S Proact

Retroact = Expect 4 Model S Act S Retroact

Perceive = see i hear i smell i taste i feel i range i retrieveMem

Act = translate i rotate i storeMem i touch

Expect = momentum i memory i frustration i conflict

where

React process describing reactive characteristics;

Proact process describing proactive characteristics;

Retroact process describing retroactive characteristics;

Perceive process describing perceptual capabilities;

Act process describing actuation capabilities; and

Expect process describing expectation capabilities.

IV. Experimental Setup
To support a MAS-based architecture, the ISA’s hardware has

to be flexible, as well as reliable, while its software has to be

scaleable, as well as robust. After careful deliberations, it was

 decided that the Altera Nios development kit [19] would be

the ideal hardware platform, as it provides flexibility of design

updates through its Stratix field-programmable gate array

(FPGA), as well as reliability through its soft-core 32-bit

reduced instruction set computer (RISC) Nios processor.

Three major designs were examined: the first based only on

the Motorola HC9S12DP256B microcontroller [20] (ISA

result shown in Figure 6, depicting a differential drive two-

wheel robotic platform with a wireless camera and an IR sen-

sor), the second based on a combination of an Altera FPGA

board and an HC9S12 microcontroller (ISA result shown in

Figure 7, depicting a synchro-drive two-wheel robotic plat-

form with an onboard manipulator arm, a camera and IR sen-

sors), and the third and final one based only on the Altera

Stratix-II FPGA board (ISA result shown in Figure 8, depict-

ing a differential-drive two-wheel robotic platform with a

FIGURE 6 ISA first design.

FIGURE 7 ISA second design.

FIGURE 8 ISA final design.

The retroactive agent architecture builds on the
importance of synaptic feedback.

FEBRUARY 2011 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 61

 digital compass, an IR sensor, a temperature

sensor and a RF modem).

The robot controller designs allowed us

more flexibility as we progressed, until we

reached the final solution, which currently

allows adding any digital interface in the

FPGA, as well as any software interface

in the soft-core microprocessor. The

latter is a 50 MHz 32-bit RISC proces-

sor that can be instantiated more than

once on the Stratix-II FPGA, easily

provisioning for a multiprocessor sys-

tem-on-chip. The robot controller also

contains 16 MB of flash memory, 1 MB

of static RAM, 16 MB of SDRAM, a

CompactFlash connector for Type I

CompactFlash cards and an on-board

Ethernet MAC/PHY device. This

board also serves as a development

platform due to its on-board Mictor connectors for

 hardware and software debug and 5V-tolerant expansion/

prototype headers for simple and fast sensor and experimen-

tal device addition.

For our experimental setup, we decided to use our latest

physical agent: the differential drive Stratix-II hardware/soft-

ware co-designed one. Using four of these agents (Figure 9),

each with different sensory configurations, allowed us to test

our simulation results. The physical environment is 198 cm

(78 inch) long by 122 cm (48 inch) wide, with 15 cm (6 inch)

radius curved corners. The peripheral walls are 2.5 cm (1

inch) in thickness and are white in color, mainly for the lat-

ter’s light reflexive properties. The inner periphery of the

environment, accounting for the walls’ thicknesses, is approxi-

mately 195 cm long by 119 cm wide. White-colored blocks

were used as obstacles and candles were used as hazards.

The environment was tessellated into 256 cells, each 12.19 cm

long and 7.44 cm wide. After many experiments, this was

found to be the ideal tessellation cell count and dimension.

Since our environmental data structure is based on a quadtree

(requiring a power of 2 tessellations), and since a 16-by-16

environment grid matched our simulation setup, we chose

256 tessellations to cover the arena. Thus, the map resolution

is approximately 90.69 cm2, while its measured accuracy is 5%

of that range, or 4.53 cm2.

Additionally, since we could not physically build as many

agents as we would like, we have written a complete ISA emu-

lator that can run on any x86-based computer. The emulator

behaves exactly as an ISA would, updating the Ethernet Access

Point (EAP), which bridges the ISA communications protocol

and Ethernet, with coordinate and status information through a

physical wireless communications module. However, the data

that it sends is generated by the emulator, and not by real sen-

sors. This does provide us with the option to test the limitations

of the wireless protocol, the fidelity of the synthesized VRME,

as well as the cooperation amongst field agents.

We now briefly describe the hardware systems integration

that was necessary for the final design of the physical agents.

Numerous robotic IP cores were developed using hardware

description languages to allow for a hardware/software

 co-design of the functionalities required by each agent. The

real-time and high frequency functions were targeted for digital

controllers, while the communication, navigation and control

functions were targeted for software tasks. Figure 10 shows the

high-level view of our Stratix-II FPGA. All the connected

modules have been mentioned and reside outside of the FPGA,

hence off-chip.

As for the software environment, it was decided that a

real-time operating system (RTOS), and an accompanying IP

stack would be necessary for scalability and robustness of the

access point. The following characterize our ideal operating

system: multitasking and interrupt support, extensive language

and microprocessor support, tool compatibility (compiler,

assembler), wide array of services (queues, semaphores, tim-

ers), small area footprint (both program and data), scaleable

design, availability of debugging tools, standards compatibility,

FIGURE 9 Fo ur physical agents used in the final experiments.

UV Sensor

IR Sensor

Dual-Axis
Accelerometer

Sonar Sensor

Compass

Left Wheel
Encoder

Right Wheel
Encoder

Altera

Stratix-II

FPGA

Wireless Serial Port

Console Serial Port

Onboard

Push-Buttons

Onboard LEDs

Right Motor

Left Motor

LCD Display

FIGURE 10 Al tera Stratix-II interconnections.

Success within an MAS was mainly achieved due to
blackboard-based knowledge sharing, odometric error
correction, simulation engine presence, and real-time
mapping representation and searching techniques.

62 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | FEBRUARY 2011

extensive device driver support and industrial and academic

support. It is imperative to have a low interrupt latency to

allow for re-entrancy and to support pre-emptive scheduling

as all those characteristics help us meet real-time constraints

when dealing with the agent’s computational requirements;

hence, after much deliberation, it was found that the uC/

OS-II [21] RTOS met most of these requirements. As for the

IP stack, lightweight IP (lwIP) [22] was also selected as the

most suitable candidate.

Let us now briefly explain the agent’s SLAM software struc-

ture that is depicted in Figure 11. The world model holds the

agent’s current view of the external environment surrounding

it. It feeds the control subsumption architecture, which reactively

behaves to the world’s sensory inputs by controlling the agent’s

motors. A navigation module decides how to freely navigate in

the world, by localizing the agent (localizer module) and driv-

ing the proportional-integrator controller (PIC) in charge of keeping

the physical agent moving at a constant velocity and in a

straight forward direction. The utilized motors are servo

motors, requiring pulse-width modulation (PWM) controllers. A

separate, but analogous, communication subsumption architecture

controls the on-board modems to react to multi-sensor fusion

requests and acknowledgements, as well as to broadcast sensory

and positioning information.

The control subsumption architecture is shown in Figure 12

and contains six behaviors that, if fired, subsume the lower prior-

ity behaviors, and control the servo motors accordingly. An arbi-

tration task periodically wakes up and decides which behavior

fires, depending on the current sensor inputs. The latter task

sleeps for 10 ms; hence, providing the agent with a sampling fre-

quency of 100 Hz. The realized control behaviors are:

1) Escape behavior fires if a bump is felt by the dual-axis

accelerometer;

2) Avoid behavior fires if an object is detected to be too

close to the agent;

3) Contain behavior fires if an environmental sensor value

increases beyond a certain threshold;

4) Drive behavior fires whenever a wheel encoder or digital

compass sensor value changes, and is the main driving

behavior of the agent, allowing it to reach its goals;

5) Explore behavior fires if there are additional unexplored

regions in the environment. It consists of randomly

moving the agent within the environment; and

6) Monitor behavior is the default one, and is fired if no other

higher priority behavior fires. It allows the agent to drive

back and forth within a certain path to monitor its local

environment.

The communication subsumption architecture is shown in

Figure 13 and contains four behaviors that, if fired, subsume the

lower priority behaviors, and control the wireless modem

accordingly. The two lower priority behaviors, Request and

Acknowledge, only appear in the distributed scenarios. An arbi-

tration task periodically wakes up and decides which behavior

fires, depending on the current sensor inputs. The realized

communication behaviors are as follows:

1) Localize behavior fires if a change occurs in the agent’s pose;

2) Announce behavior fires if a change occurs in the agent’s

sensors;

3) Request behavior fires when additional mapping or status

information is required by the agent; and

4) Acknowledge behavior fires when a request has been processed

and accepted.

FIGURE 12 Cont rol subsumption architecture.

Bumper

IR/Sonar

UV/Temperature

Enc./Compass

Escape

Avoid

Contain

Drive

Explore

Monitor Motors

S

S

S

S

S

FIGURE 13 Commu nication subsumption architecture.

Encoders/
Compass

Bump/IR
Sonar/UV

Localize

Announce

Request

Acknowledge Modem

S

S

S

World
Model

Control
Subsumption
Architecture

Navigation
Module

Localizer
Module

Pose

Proportional Integrator
Controller

Optical Encoders

Magnetic Compass

PWM
Controller

Servo
Motors

Velocities

FIGURE 11 Age nt SLAM software.

FEBRUARY 2011 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 63

The experimental setup included a territory with a sample

scenario that the agents were securing. Lit candles were used to

indicate hazards while objects were used to indicate obstacles.

Building blocks were used to indicate perimeters to be secured.

The four physical agents proceed to map

the environment using the TIMM meth-

odology, then continuously monitor and

secure the designated perimeters, and pro-

duce a VRME output such as the one

shown in Figure 14. The obstacles were

modeled as grey vertical strips, while haz-

ards were modeled as red horizontal strips.

Figure 15 shows the path taken by

one physical agent as it traverses the envi-

ronment while mapping and monitoring

it. The path cells are modeled as green

horizontal strips (a different green hue is

used for each agent), and were placed at

each coordinate in the environment

whenever an agent sent an InteRCom

coordinate update packet to the EAP.

Finally, the ISAs form a mobile ad-

hoc network and communicate using our

devised Intelligent Robotic Communication

(InteRCom) protocol. InteRCom is a cost

effective protocol that attempts to meet

the policies set forth in [23]. Those poli-

cies are summarized below:

 ❏ Connection establishment and

resource allocation;

 ❏ Quality-of-service capable sensor traf-

fic delivery;

 ❏ ”Intelligent networking” on distribut-

ed architectures; and

 ❏ Ad-hoc networking infrastructure

support.

The protocol was designed to be sca-

leable and robust. It is scaleable because

it is extremely easy to incorporate het-

erogeneous sensor, as well as haptic

feedback, information through InteR-

Com’s packet structure. The protocol is

robust because it is built on top of the

UDP/IP stack that was aforementioned,

and it adds error checking at the appli-

cation level, to counter the no reliability

constraint of the UDP network layer

protocol. Figure 16 shows InteRCom’s

packet structure. InteRCom currently

operates over an augmented wireless

serial line IP (SLIP) protocol that allows

for multiple devices to communicate by

sharing a common wireless channel.

This is accomplished through the addi-

tions of the InteRCom header and

 trailer to every IP datagram. As can be seen in the figure, the

packet is subdivided into 5 main fields:

 ❏ InteRCom ID: 8-bit value used to uniquely identify the

communicating device;

FIGURE 15 VRME ex perimental snapshot—an agent’s path.

FIGURE 14 VRME e xperimental snapshot—discovering a perimeter.

64 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | FEBRUARY 2011

 ❏ Header length: 8-bit value used to indicate the header length

in bytes;

 ❏ Message type: 8-bit value used to indicate the type of mes-

sage being sent;

 ❏ CRC: 16-bit value captures a cyclic redundancy check

that was performed by the transmitting device on the

entire application packet; and

 ❏ User data: This is a dynamic length value, depending on the

number of parameters that is being sent. Typically, it is a

96-bit field as ternary floating-point values are sent either

the agent pose or its sensory information.

V. Virtualized Reality Interface
The user interface of a multi-agent system is an important

element of its overall structure. It is the method by which the

user is presented with a stable and consistent view of the

environment, and is allowed to interact with its elements. This

section presents a unique user interface, termed the virtualized

reality model of the environment, which provides the user with a

real-time view of the real-world environment that is being

secured. Such an environment synthesizes a world model

from the fusion of the distributed sensor measurement data. It

can be used by remote operators such as security operators,

air traffic controllers and space mission commanders. The

solution conforms to the X3D standard and supports the

dynamic insertion/deletion of virtualized agents and objects.

It also supports the dynamic loading of remote environment

models for real-time decision making.

A. Virtualized Reality Model
of the Environment
Human virtual environment tele-immersion

has been a research endeavor undertaken by

numerous institutions. Some researchers have

gone as far as presenting the idea of “robotting into” a

machine [24], where human operators can assume control of

a remote robotic machine by immersing themselves into an

environment of virtual sensing and actuating.

Since the remote access could be at any location and at any

machine on the wireline network, the Java programming lan-

guage became the method of choice for network and graphi-

cal functionalities, while the Virtual Reality Modeling

Language (VRML) was chosen for the implementation of the

actual environment model in 3D. The VRML world was sys-

tematically converted to the more recent 3D scene and object

representation: X3D. The latter is a standard published by the

Web3D consortium, and has a rich set of componentized fea-

tures that can be described using XML. Research was per-

formed concerning other languages such as JavaScript 3D, Java

3D, and Maya, but they were all found lacking in desired func-

tionality or were too computationally intensive for the pur-

pose at hand.

B. VRME Details
To support the apparition of a new mobile agent into the

environment, the EAP must first register the new agent into

its local mapping tables, and transmit the new agent’s

 identification to the VRME application. The VRME pro-

ceeds to instantiate a new agent node graph as shown in Fig-

ure 17. The agent node transform, agent0, has three

characteristics translation, rotation and scaling factors, as well

as a children node. The children node has three associated

FIGURE 16 InteRCom packet structure.

User Data

User Data

Application Data

App. Header

UDP Header

IP Header

InteRCom Header

InteRCom ID Header Length Msg. Type 16-bit CRC User Data

InteRCom Trailer

InteRCom Driver

InteRCom

IP Datagram

UDP Datagram

IP

UDP

Application

The experimental setup included a territory with a
sample scenario that the agents were securing.

FEBRUARY 2011 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 65

nodes: Shape, TouchSensor and TimeSensor.

The Shape node defines the geometry of

the agent node, as well as its appearance. In

our case, agents are modeled as boxes with a

texture of an agent’s picture enveloping the

box. The TouchSensor node defines an event

that occurs when a mouse down or a mouse

up event occurs on the agent transform node. The ViewPoint

node defines an agent-centric viewpoint for the navigation

of the environment from the agent’s perspective. Finally, four

TimeSensor nodes, all with one second intervals, define the

controlled behavior of the agent within the X3D world. The

translation and rotation timers control the rendering fluidity

of the agent’s movements within the 3D world. The anima-

tion timer controls the translation and rotation timers by

providing them with their start times when the agent is

required to animate. Finally, the reload timer is used to peri-

odically check with the external world, whether the agent is

required to animate.

Along with dynamically creating an agent transform node,

we must also create the script node that allows for the agent’s

behavior to be controlled. The agentMoveScript is dynamically

added for each agent, and its inputs and outputs dynamically

routed to the specific components, as shown in Figure 18.

The sequence of events occurs as follows:

1) The reload timer generates an event that is routed to the

reloadValues input of the agentMoveScript node;

2) The agentMoveScript node generates a signal that is routed

to the enabled input of the animationTimer node;

3) The animationTimer node generates a signal that is routed

to both startTime inputs of the translationTimer and rota-

tionTimer nodes;

4) The translationTimer and rotationTimer nodes generate

fraction changed signals that are routed to the setPos-

Fraction and setHeadingFraction inputs of the agentMo-

veScript node;

5) The agentMoveScript node proceeds to translate and

rotate the agent virtualization by generating appropri-

ate set translation and set rotation signals to the agent0

node;

6) Finally, the agent0Touch node generates an isActive signal

every time the agent is clicked upon by a mouse, which

retrieves the agent’s sensory status for display.

In addition to the dynamic insertion of virtualized

agent nodes, the VRME application also supports the

dynamic insertion of virtualized objects, mainly obstacles

(displayed as white thin vertical stripes), to indicate walls

and barriers, hazards (displayed as red thick horizontal

plates), to indicate environmental parameters that are

beyond set thresholds, paths (displayed as colored thin hori-

zontal plates), to indicate agent path traversals, and finally,

cells (displayed as grey thin horizontal plates), to indicate

the entropy and mutual information values of a particular

coordinate.

VI. Future Enhancements
The utilization of previously developed robust speed control

mechanism and global navigation scheme would greatly

improve the resolution of the SLAM problem that exists

when ISAs traverse unstructured environments. Shown in

[25], the neural global navigation provides control of an ISA’s

direction, planning of its path to the main goal, tracking a

predefined path as sub-goals, and avoidance of expected and

unexpected obstacles, while the incorporated fuzzy-neural

system provides speed control of the ISA.

Transform

agent0

childern translation

10 0.3 10

rotation

0 1 0 1.57

scale

1 1 1

Shape

mISA0
TouchSensor

agent0Touch

TimeSensor
agent0

TranslationTimer

TimeSensor
agent0

RotationTimer

TimeSensor
agent0

AnimationTimer

TimeSensor
agent0

ReloadTimer

ViewPoint
agent0

Viewpoint

geometry

Box
appearance
Appearance

active

true

texture

mISA.gif

cycleInterval
1.0

cycleInterval
1.0

cycleInterval
1.0

cycleInterval
1.0

jump
true

FIGURE 17 Virtualiz ed agent node graph.

The virtualized reality model of the environment
provides the user with a real-time view
of the real-world environment that is
being secured.

66 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | FEBRUARY 2011

On another front, there are two ways that operations

research concepts can be used to enhance the MAS models

presented: sensor management and risk analysis. Sensor manage-

ment deals with the operational aspects of deploying a sensor

network in the field. In other words, it allows us to determine

among other factors the number of sensors, and their mix for

use in territorial security or defense systems using an optimi-

zation framework [26].

Risk often refers to the effect of uncertainty on a system’s

objectives; in this case, the uncertainty of the MAS being able

to effectively monitor and secure the large geographic area.

Risk of an event is traditionally defined as the multiplication

of the likelihood of an event occurring by its impact [27].

Risk analysis allows us to take into consideration the varia-

tions (both negative and positive) due to future unknown

events. Often, large numbers of scenarios with various

degrees of variability are generated in order

to examine future uncertainty [28]. This is

referred to as massive scenario generation

(MSG). Thus, one interesting area to investi-

gate would be the use of MSG in MAS sce-

nario evaluation in order to determine the

degree to which a particular sensor configuration is able to

mitigate risks for the application at hand.

While MSG would be a good method to assess the risk

associated with particular sensor configurations simulated

using a MAS, the high computational cost of repeatedly run-

ning a MAS does not allow a MAS to be used as a fitness

evaluation within a sensor management optimization frame-

work. Even for a very simplistic MAS-based MSG evaluation

of a single configuration, a large number of computations

would be used in the evaluation of optimization fitness

functions. Thus, as was done in the case of discrete event

simulation [29][30], creating simplified MAS models in

order to carry out sensor management-type analysis would

also be of interest.

We can also consider, within a MAS, the addition of vari-

ous risk-producing events such as external or environmental

Risk analysis allows us to take into consideration the
variations (both negative and positive) due to future
unknown events.

FIGURE 18 Virtualize d agent state diagram.

cycleTime (1s)

1

reloadValues

posChanged

set_translation

6b

6a

set_rotation

getStatus
agent0

7

isActive

agent0Touch

headingchanged

coordChanged
setPosfraction

setHeadfraction

startTime

startTime

fraction_changed

fraction_changed

cycleTime (1s)

5a

5b

4

2

enabled

3

reloadTimer

agentMove

Scipt

agent0

Translation

Timer

agent0

Rotation

Timer

animationTimer

FEBRUARY 2011 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 67

risks (e.g. chemical spills, potholes, hostility measures), as well

as internal risks (e.g. power failure, sensor failure) which

impact on the good working order of a particular sensor con-

figuration. MAS models could thus be enhanced by the

inclusion of this random event mix which would further

contribute to adding a risk dimension to multi-agent sensor

models and systems.

Finally, we can also consider a dynamic sensor management

problem which is similar to dynamic vehicle routing [31]

where instead of passengers or parcels to pick up we have vari-

ous sensor types that need to be placed in various locations. In

dynamic sensor management, sensors are dynamically allocated

to perform urgently required tasks. The urgency of such a

dynamic deployment or re-deployment of a sensor would be

determined by the perceived risk of not having a sensor present

over some time period in a particular location or area. In addi-

tion, sensor cueing and hand-off between sensors would also be

important research areas.

VII. Conclusions
In this article, a multi-agent system composed of agents that

each possess a limited amount of computational power and

communications bandwidth for a territorial security applica-

tion was designed, developed and experimentally verified.

A novel agent architecture has been presented. The retro-

active agent architecture describes a novel concept in the

design of intelligent machines. Originally attributed to Vernon

B. Mountcastle, who suggested that every part of the human’s

cortex is made up of the same structure, the common cortical

theory is now being viewed, by some neuroscientists, as the

elusive link to building truly intelligent machines [32].

Finally a virtualized reality model of the environment was

developed, created and validated by feeding real-world and

real-time sensory data begotten from physical agents, and

dynamically creating a world filled with virtualized agents,

paths, obstacles, hazards, perimeters and cells. The synchroni-

zation between the VRME and the various access points (e.g.,

EAP) also allows for agents to drop in and out of range, or in

and out of the environment completely, without affecting the

virtualized world. This seamless immersion aids human moni-

tors to remotely get safer and better acquainted with

unknown, and possibly hostile, environments, by deploying a

foraging society of robotic agents that synthesizes the VRME

in real-time.

VIII. Acknowledgments
This work was funded in part by the Natural Sciences and Engi-

neering Research Council (NSERC) of Canada, the Communi-

cations Research Centre Canada (CRC), and the

Communications and Information Technology Ontario (CITO).

References
 [1] USBX Advisory Services, “HSIC 2006; The state of play in homeland security: Criti-
cal infrastructure—The next frontier,” 2006.

 [2] Larus Technologies and GE Fanuc Intelligent Platforms, “21st Century Territorial
Security: A sensor network approach,” White Paper, Nov. 2008.

 [3] M. Woolridge, An Introduction to Multi-Agent Systems. Hoboken, NJ: Wiley, 2002.

 [4] K. A. Tarabanis, P. K. Allen, and R. Y. Tsai, “A survey of sensor planning in computer
vision,” IEEE Trans. Robot. Automat., vol. 11, no. 1, pp. 86–104, 1995.

 [5] P. G. Balaji and D. Srinivasan, “Multi-agent system in urban traff ic signal control,”
IEEE Comput. Intell. Mag., vol. 5, no. 4, pp. 43–51, Nov. 2010.

 [6] R. Abielmona, E. M. Petriu, and T. E. Whalen, “Multi-Agent System Information
Fusion for Environment Monitoring,” in Proc. IEEE Instrumentation and Measurement Tech-
nology Conf. (IMTC’06), Sorrento, Italy, 2006, pp. 1774–1779.

 [7] T. Kanade, P. Rander, and P. J. Narayanan, “Virtualized reality: Constructing virtual
worlds from real scenes,” IEEE Multimedia, vol. 4, no. 1, pp. 34–47, 1997.

 [8] A. Assal and V. Groza, “Agent-based resource management for smart robotic sensors,”
in IEEE Canadian Conf. Electrical and Computer Engineering (CCECE’04), May 2004, vol.
4, pp. 2239–2242.

 [9] R. Brooks, “A robust layered control system for a mobile robot,” IEEE J. Robot. Au-
tomat., pp. 14–23, 1986.

 [10] E. M. Petriu, R. Abielmona, and V. Z. Groza, “Agent-based control for a dynami-
cally reconfigurable mobile robotic structure,” in Proc. IEEE Int. Workshop on Robotic
Sensing (ROSE’04), May 2004, pp. 24–29.

 [11] V. R. Lesser and L. D Erman, “Distributed interpretation: A model and an experi-
ment,” IEEE Trans. Comput., vol. C29, no. 12, pp. 1144–1163, Dec. 1980.

 [12] M. Pauly and K.-F. Kraiss, “Monitoring indoor environments using intelligent mo-
bile sensors,” in Proc. 24th IECON Conf. IEEE Industrial Electronics Society, Feb. 1998, vol.
4, no. 4, pp. 2198–2203.

 [13] D. J. Bruemmer, D. D. Dudenhoeffer, and M. L. Davis, “Modeling and simulation
for exploring human-robot team interaction requirements,” in Proc. 2001 Winter Simula-
tion Conf., 2001.

 [14] F. Amigoni and M. Somalvico, “Multiagent systems for environment perception,” in
Proc. AI Environmental Application Conf., 2003.

 [15] K. A. de Jong, “Evolving intelligence agents: A 50 year quest,” IEEE Comput. Intell.
Mag., vol. 3, no. 1, pp. 12–17, Feb. 2008.

 [16] G. Weiss, Ed., Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence.
Cambridge, MA: MIT Press, 2001.

 [17] J. Leng, J. Li, and L. C. Jain, “A role-based framework for multi-agent teaming,” Lect.
Notes Comput. Sci., vol. 5179, pp. 642–649, 2008.

 [18] M. Luck and M. d’Inverno, Understanding Agent Systems, 2nd ed. Berlin: Springer-
Verlag, 2004.

 [19] Altera Corp. (2010, Sept. 20). Nios Development Kit (Stratix Professional Edition)
[Online]. Available: www.altera.com/products/devkits/kit-dev_platforms.jsp

 [20] Technological Arts. (2010, Sept. 20). 9S12 C microcontroller family overview [On-
line]. Available: www.technologicalarts.ca/catalog/index.php/cPath/50_75

 [21] J. Labrosse, MicroC/OS-II, CMP Books, 2nd ed. 2002.

 [22] A. Dunkels, “Minimal TCP/IP implementation with proxy support,” M.S. thesis,
SICS—Swedish Institute of Computer Science, 2001.

 [23] E. M. Petriu, N. D. Georganas, D. C. Petriu, D. Makrakis, and V. Z. Groza, “Sen-
sor-based information appliances,” IEEE Instrum. Meas. Mag., vol. 3, no. 4, pp. 31–35,
2000.

 [24] R. Brooks, Flesh and Machines: How Robots will Change Us. New York: Pantheon
Books, 2002.

 [25] M. Harb, R. Abielmona, and E. M, Petriu, “Speed control of a mobile robot using
neural networks and fuzzy logic,” in Proc. Int. Joint Conf. Neural Networks (IJCNN’09),
Atlanta, Georgia, June 2009, pp. 1115–1121.

 [26] S. Sen, S. Narasimhan, and K. Deb, “Sensor network design of linear processes using
genetic algorithms,” Comput. Chem. Eng., pp. 385–390, 1998.

 [27] D. Hubbard, The Failure of Risk Management: Why It’s Broken and How to Fix It. Hobo-
ken, NJ: Wiley, 2009.

 [28] P. K. Davis, S. C. Bankes, and M. Egner, “Enhancing strategic planning with massive
scenario generation: Theory and experiments,” RAND Corporation, 2007.

 [29] S. Wesolkowski and A. Billyard, “The stochastic f leet estimation (SaFE) model,” in Proc.
SpringSim, Ottawa, Canada, Apr. 2008.

 [30] K. Willick, S. Wesolkowski, and M. Mazurek, “Multiobjective evolutionary algo-
rithm with risk minimization applied to a f leet mix problem,” in Proc. IEEE CEC, Bar-
celona, Spain, July 2010.

 [31] D. Sáez , C. E. Cortés, and A. Núñez, “Hybrid adaptive predictive control for the multi-
vehicle dynamic pick-up and delivery problem based on genetic algorithms and fuzzy cluster-
ing,” Comput. Oper. Res., vol. 35, no.11, pp. 3412–3438, Nov. 2008.

[32] V. Mountcas tle, “An organizing principle for cerebral function: The unit model and
the distributed system,” in The Mindful Brain, G. M. Edelman and V. B. Mountcastle, Eds.
Cambridge, MA: MIT Press, 1978.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

