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Abstract–Territorial security deals with the prevention, 
detection and response to unauthorized persons and/or 
goods from crossing a perimeter. It deals with large territo-
ries of strategic importance, such as international borders, 
transportation and critical infrastructure. Multi-agent systems 
provide flexibility, fault-tolerance, high sensing fidelity, low-
cost and rapid deployment. In this paper, we concentrate on 
the challenges presented in applying the concepts of multi-
agent systems to those presented by territorial security. We 
first introduce the overall system as well as prevalent agent 
architectures. We then briefly present our novel agent archi-
tecture, its experimental embodiment and the virtualized 
reality model that accepts physical sensor data and updates a 
global model of the environment in real-time.

© BRAND X PICTURES

I.  Introduction

P reventing, detecting, and responding to unauthorized 

persons and/or goods crossing a perimeter is a security 

concern of individual, corporate, and international 

scope. State-of-the-art perimeter-security solutions use 

physical barriers, sensors (indoor motion, cameras, audio/vibra-

tion), and human personnel (a camera operator, entrance guard, 

and patrolling security guards). These procedures are effective 

in a limited scenario, where a few entrance points are con-

strained by well-delineated physical boundaries.

Territorial security, however, deals with large territories of stra-

tegic importance, such as international borders, transportation 

(airports, rail yards, public transit), and critical infrastructure (mili-

tary bases, nuclear facilities, emergency services, etc.) [1]. When 

trying to monitor such large geographically-distributed 
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 infrastructure, a number of challenges present themselves. First, a 

linked network of this size is inflexible and expensive to setup. 

Second, security operators frequently suffer from overload, stress, 

and inattention due to the substantial influx of data. Finally, it is 

increasingly important for territorial security systems to allow for 

the sharing of knowledge to specified entities [2].

The complexity of securing an unpredictable and continu-

ously changing natural environment is a function of the nature, 

number, and characteristics of the parameters of  interest and of 

the desired measurement data properties. The types of sensors, 

their number and their bandwidth, their deployment in the 

field, the expected performance levels of the sensor data acquisi-

tion system and of the data communication network are all 

requirements that have to be considered when designing a multi-

agent system [3] for territorial security. Additionally, in order to 

avoid wasting the limited power resources, the 

agents should have a selective perception capa-

bility focusing only on the parameters that are 

of interest for the specific securing task. Spe-

cially designed sensor planning strategies are 

used to place the fixed and mobile sensor 

agents in such a way as to get optimum performance during 

specific tasks and for the real-time selection of sensing opera-

tions to minimize the observed system entropy [4].

A multi-agent system (MAS) is one where individual 

agents coordinate their activities and cooperate with each 

other, to avoid duplication of effort and to exploit other 

agents’ capabilities [3]. Multi-agent systems have been pro-

posed and implemented for use in distributed sensing and 

information retrieval and management [5]. A Distributed intelli-

gent sensor system (DISS) [6] was developed to integrate robotic 

intelligent sensor agents (ISAs), the wireless  communications 

network, as well as the virtualized reality model of the environment 

(VRME). ISAs could either be mobile (mISAs) or stationary 

(sISAs). The virtualized reality concept introduced by Kanade 

et al. [7] represents an extension of the typically computer-

generated, but synthetic virtual reality 

concept. VRME integrates natural envi-

ronment information captured by the 

ISAs in the field. DISS’ design require-

ments are broken up into five major cat-

egories (refer to Figure 1):

1)  Distributed agent-based resource 
management: This framework pro-

vides a flexible, extensible and open 

mechanism allowing for agent 

interoperability. Work has already 

been completed on such a framework 

[8], that assumes a limited amount of 

computational and communication 

resources on each ISA;

2)  Local intelligence: A reactive-

behavior paradigm [9] has been 

investigated and implemented in 

[10]. The agent reacts to sensory 

inputs from its environment, by actu-

ating upon the latter, without rea-

soning about the performed actions. 

A novel retroactive agent architecture has 

been devised and tested in experi-

mental scenarios and will be present-

ed in this article;

3)  Network intelligence: Since all 

our ISAs are instinctive information 

seeking agents, some of them will 

cooperate together towards the 

achievement of the overall goal, that 

is to maximize the information 

acquired from the environment 

about objects or events;F IGURE 1 DISS flow diagram.
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1) Wireless communication: A network 

protocol, referred to as Intelligent Robotic 

Communication (InteRCom), has been 

devised to allow for the efficient utiliza-

tion of the available wireless channels; 

and

2) Multi-sensor fusion: This mechanism 

is used to integrate heterogeneous sen-

sory data into a composite and coherent model of the 

environment. As human beings are valuable partners to 

the ISAs to the degree that their capabilities comple-

ment those of the ISAs, the VRME should allow the 

human operators to feel their own sense of vision, hear-

ing, smell, taste and touch. The latter can be accom-

plished by forcing a direct feeling of the contact 

phenomena that a specific ISA experiences while in the 

field [7]. However, we currently only support sensory 

feedback to a workstation VRME. In the future, head-

mounted displays and haptic  feedback gloves will allow 

the human monitors to incrementally immerse them-

selves into the VRME.

Abielmona et al. have previously described an environment 

mapping method called Tree-In-Motion Mapping (TIMM) that 

combines environment mapping through entropy reduction 

with a quadtree-based data structure to present a multi- 

resolution and multi-dimensional view of the environment [6]. 

The method, which integrates simplicity and speed of compu-

tation, as well as low storage and communications require-

ments, is ideal for the targeted platform of fixed and mobile 

agents. This article will concentrate on the local intelligence 

and the VRME.

II. State of the Art
As aforementioned, a MAS provides an effective solution to 

distributed sensing applications. Shown in Table 1 is a com-

parison of the relevant MAS implementations, including 

their agent architecture (AA) (i.e., R is a reactive one, P is a 

proactive one, and H is a hybrid one), and the system’s most 

prevalent pros and cons. In comparison with the systems pre-

sented above, DISS possesses a hybrid agent architecture, as 

both reactive and retroactive agent architectures are utilized, 

that provides system flexibility in choosing the best 

 architecture for particular applications. DISS clearly outlines 

a communications protocol that allows for the agents to 

communicate with system access points, as well as with each 

other. The communication of incomplete results is performed 

through a blackboard architecture, the latter being a major 

component in synthesizing the global map from local 

 incomplete ones.

The agents are hardware independent, as the entire sys-

tem was specified using a hybrid formal specification lan-

guage, allowing for a level of abstraction that does not 

constrain the designer to a particular architecture. This has 

been demonstrated by the realization of three different 

design implementations of the physical agents: a purely soft-

ware spin running on a microcontroller, a hardware/software 

spin running on a programmable device (e.g. FPGA) and an 

off-chip microcontroller, and finally, a hardware/software co-

design running on a programmable device and an on-chip, 

soft-core microprocessor. Finally, DISS presents separate sim-

ulation and virtualization engines. The simulation engine 

allows the user to simulate MAS-based scenarios to optimize 

design factors while extracting environmental parameters. 

Once the system has been optimized and realized, a separate 

virtualization engine is used to seamlessly immerse the 

remote user into the MAS environment, even across the 

Internet, if required.

After reviewing the advantages and disadvantages of previ-

ous and related solutions, it was concluded that success within 

an MAS was mainly achieved due to blackboard-based knowl-

edge sharing, odometric error correction, simulation engine 

presence, and real-time mapping representation and searching 

techniques [14]. Conversely, it was found that problems with 

scalability, robustness and emergent behaviors resulted mainly 

from static agent organizations, customized agent designs, 

homogeneous agent architectures and incomplete results com-

munications [14].

TABLE 1 Comparison of MASes.

AUTHORS AA ADVANTAGES DISADVANTAGES
LESSER AND ERMAN [11] H FOUNDATIONAL WORK IN DAI

TWO-TIERED BLACKBOARD ARCHITECTURE
ROBUST AND FAULT-TOLERANT SYSTEM

PRE-DESIGNED (STATIC) AGENT ORGANIZATIONS
IMPRACTICALITY OF COMMUNICATING INCOMPLETE 
RESULTS
HOMOGENEOUS AAS A HINDRANCE

PAULY AND KRAISS [12] H SUCCESSFUL QUADTREE AND AA* COMBINATION
EKF AIDS IN REDUCING ODOMETRIC ERRORS
HYBRID AND FLEXIBLE AA

OVERBURDENING CUSTOMIZATION IN THE DESIGN OF 
AGENTS
LACK OF EXPLICIT COMMUNICATIONS DETAILS
HARDWARE-DEPENDENT AGENTS

DUDENHOEFFER 
AND BRUEMMER [13]

R ROBUST SIMULATION ENGINE IN SIMAGENT
SOLID SOCIAL POTENTIAL FIELDS METHOD
ONLINE LEARNING RESOLVED

CRUDE ROBOTIC POSE
NO SOLUTION TO RECURSIVE OR OMISSIVE SENSING
REACTIVE AA A DETRIMENT

The communication of incomplete results is 
performed through a blackboard architecture, the 
latter being a major component in synthesizing the 
global map from local incomplete ones.
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III. Agent Architectures
Agent architectures define the approach that one takes in the 

building of intelligent systems, including the internal structure 

and operation of the agent. They are typically divided into 

logic-based, reactive, belief-desire-intention and layered archi-

tectures. However, a more concrete division outlines proactive, 

reactive and hybrid agent architectures. Proactive agent archi-

tectures are intuitive and easily decompose into subsystems; 

however, they suffer from the problem of calculative rationality 

and are usually difficult to realize [9]. Reactive agent architec-

tures are simple, economical and computationally tractable; 

however they suffer from the problem of a short-term view 

and are usually difficult to implement if they contain many 

layers. Hybrid agent architectures are either horizontally-or 

vertically-layered, and combine advantages from both proac-

tive and reactive architectures; however, they suffer from other 

problems, such as the absence of a semantic or conceptual 

clarity and the difficulty of inter-layer interactions. Other 

techniques involving the evolution of the agent’s architecture 

[15] are outside the scope of this article.

A. Proactive Architecture
Figure 2 describes the typical proactive agent architecture [16] 

used for most of the robotic architectures synthesized in the 

1980s, and still in use today; there are at 

least four major functional units that a 

robotic agent has to execute to respond to 

environmental events through the manipu-

lation of one or more of its actuators. This 

model has shown conditional success in 

structured environments; however, it is not 

very reliable in hostile environments [17]. 

To achieve a level of autonomy capable of existing in an 

unstructured environment, different agent architectures have 

to be utilized. Hence, proactive architectures provision for a 

deterministic traversal of the world, but suffer from prob-

lems such as calculative rationality and complex mapping 

functions [9].

A proactive architecture can be formalized as the following 

infinite loop:

proactive = perceive S model S plan S act S proactive 

B. Reactive Architecture
Starting with Brooks’ now famous paper [9], it has been 

shown that the problem of calculative rationality, present in 

the proactive architectures, where the decision making 

apparatus will suggest an action that was optimal when the 

decision making process began, is a major drawback to pro-

active agent architectures. This problem, along with many 

others (e.g. knowledge representation complexity, slow 

search and planning phases, and inherently sequential opera-

tion), forced robotics researchers into devising faster, simpler 

and more economical solutions for autonomous robotic 

control. Behavior-based architectures, better known as reac-

tive agent architectures [16] (shown in Figure 3), were the 

result of such endeavors, and have led to a revolution in the 

design of robotic controllers. Reactive architectures are ele-

gant, robust against failure and computationally tractable. 

They are based on three key Brooksian principles: situated-

ness, which allows for a timely response to world events 

since the model consists of a direct connection from per-

ception to actuation, embodiment, which is the physical 

grounding of the robot in the real world giving meaning to 

the internal symbolic system, and emergence, which allows for 

insect-like intelligence through the interactions of simpler 

components of the system.

Over time though, it became apparent that reactive archi-

tectures were not the generic solution to autonomous robotic 

control since there were just too many unforeseen drawbacks 

[16]. First of all, robots needed more information to make a 

decision due to the lack of internal work models. Second, it 

was not very clear how these entities can learn from 

 experience, to improve their performance over time. Third, and 

most important, robots built using this architecture suffered 

from a short-term view, in that each decision was based on the 

current state only.

A reactive architecture can be formalized as the following 

infinite computational loop:

reactive = perceive S act S reactive. 
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to increase, eventually causing that behavior to fire and 
react to the event by executing the behavior’s plan.
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C. Hybrid Architecture
Due to the aforementioned hindrances, researchers began 

combining the two extremes into 3-layer systems (reactive 

near the bottom, proactive near the top and an intermediate 

layer connecting the two), that have been dubbed hybrid agent 

architecture [16]. Today, they are the most popular [18] class of 

robotic agent architectures due to their natural decomposition 

of functionality into the individual reactive, proactive or 

abstract layers. Two types of hybrid architectures exist, one 

with horizontal layering and the other with vertical layering. 

The former has each layer connected to the sensors and actua-

tors, with a mediator deciding which layer has control over the 

body at any time, while the latter has a one or two-pass orga-

nizational scheme where information and command both flow 

upwards (one-pass) or information flows upwards and com-

mands flow downwards (two-pass). Vertically layered hybrid 

agent architectures suffer from a loss of flexibility and weak 

fault-tolerance, whilst horizontally-layered hybrid agent archi-

tectures suffer from complex mediation modules in the case of 

real-world robots.

D. Retroactive Architecture
We now take a look at a novel agent architecture that combines 

both proactive and reactive characteristics. In a retroactive architec-

ture, an event in the environment occurs, causing momentum in 

a behavior to increase, eventually causing that behavior to fire and 

react to the event by executing the behavior’s plan. The events of 

importance are changes in the perceived world attributes that the 

mind is concerned with; i.e., ones that conflict with its world 

goals. The reactive characteristic of this architecture involves pre-

cisely knowing which behavior to fire through momentum resolu-

tion, while the proactive characteristic of this architecture involves 

precisely knowing how to behave through plan execution. Figure 4 

depicts the retroactive agent architecture, which augments both 
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reactive and proactive architectures, through its validation block 

by feeding back into the mind and predicting the next event that 

will occur, based on previous experiences.

The retroactive agent architecture builds 

on the importance of synaptic feedback, 

where, for example, every sensed event elicits 

a reaction by the agent onto the world to 

handle the event, a retroassertion (i.e., future 

validation) onto the agent’s mind to compartmentalize the 

new or old data, and subsequently a possible proaction onto 

the world again to seek more information about the event. 

The authors have identified six synaptic acts, namely reactions, 

proactions, retroactions, reassertions, proassertions and retroas-

sertions, which if observed from the outside, ascribe intelli-

gent behavior to machines. To better visualize the synaptic 

acts, the reader is pointed towards Figure 5. A retroactive 

architecture allows an autonomous robot to learn over time, 

solving the short-term view of reactive systems, and to 

respond in real-time to world events, solving the calculative 

rationality of proactive systems.

A retroactive architecture can be formalized as the follow-

ing infinite loops:

retroactive = React i Proact i Retroact

React = Perceive S Act S React

Proact = (Perceive S Expect) S Model S Act S Proact

Retroact = Expect 4 Model S Act S Retroact

Perceive = see i hear i smell i taste i feel i range i retrieveMem

Act = translate i rotate i storeMem i touch

Expect = momentum i memory i frustration i conflict

where

React process describing reactive characteristics;

Proact process describing proactive characteristics;

Retroact process describing retroactive characteristics;

Perceive process describing perceptual capabilities;

Act process describing actuation capabilities; and

Expect process describing expectation capabilities.

IV. Experimental Setup
To support a MAS-based architecture, the ISA’s hardware has 

to be flexible, as well as reliable, while its software has to be 

scaleable, as well as robust. After careful deliberations, it was 

 decided that the Altera Nios development kit [19] would be 

the ideal hardware platform, as it provides flexibility of design 

updates through its Stratix field-programmable gate array 

(FPGA), as well as reliability through its soft-core 32-bit 

reduced instruction set computer (RISC) Nios processor. 

Three major designs were examined: the first based only on 

the Motorola HC9S12DP256B microcontroller [20] (ISA 

result shown in Figure 6, depicting a differential drive two-

wheel robotic platform with a wireless camera and an IR sen-

sor), the second based on a combination of an Altera FPGA 

board and an HC9S12 microcontroller (ISA result shown in 

Figure 7, depicting a synchro-drive two-wheel robotic plat-

form with an onboard manipulator arm, a camera and IR sen-

sors), and the third and final one based only on the Altera 

Stratix-II FPGA board (ISA result shown in Figure 8, depict-

ing a differential-drive two-wheel robotic platform with a 

FIGURE 6 ISA first design.

FIGURE 7 ISA second design.

FIGURE 8  ISA final design.

The retroactive agent architecture builds on the 
importance of synaptic feedback.
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 digital compass, an IR sensor, a temperature 

sensor and a RF modem). 

The robot controller designs allowed us 

more flexibility as we progressed, until we 

reached the final solution, which  currently 

allows adding any digital interface in the 

FPGA, as well as any software interface 

in the soft-core microprocessor. The 

latter is a 50 MHz 32-bit RISC proces-

sor that can be instantiated more than 

once on the Stratix-II FPGA, easily 

provisioning for a multiprocessor sys-

tem-on-chip. The robot controller also 

contains 16 MB of flash memory, 1 MB 

of static RAM, 16 MB of SDRAM, a 

CompactFlash connector for Type I 

CompactFlash cards and an on-board 

Ethernet MAC/PHY device. This 

board also serves as a development 

platform due to its on-board Mictor connectors for 

 hardware and software debug and 5V-tolerant expansion/

prototype headers for simple and fast sensor and experimen-

tal device addition.

For our experimental setup, we decided to use our latest 

physical agent: the differential drive Stratix-II hardware/soft-

ware co-designed one. Using four of these agents (Figure 9), 

each with different sensory configurations, allowed us to test 

our simulation results. The physical environment is 198 cm 

(78 inch) long by 122 cm (48 inch) wide, with 15 cm (6 inch) 

radius curved corners. The peripheral walls are 2.5 cm (1 

inch) in thickness and are white in color, mainly for the lat-

ter’s light reflexive properties. The inner periphery of the 

environment, accounting for the walls’ thicknesses, is approxi-

mately 195 cm long by 119 cm wide. White-colored blocks 

were used as obstacles and candles were used as hazards.

The environment was tessellated into 256 cells, each 12.19 cm 

long and 7.44 cm wide. After many experiments, this was 

found to be the ideal tessellation cell count and dimension. 

Since our environmental data structure is based on a quadtree 

(requiring a power of 2 tessellations), and since a 16-by-16 

environment grid matched our simulation setup, we chose 

256 tessellations to cover the arena. Thus, the map resolution 

is approximately 90.69 cm2, while its measured accuracy is 5% 

of that range, or 4.53 cm2.

Additionally, since we could not physically build as many 

agents as we would like, we have written a complete ISA emu-

lator that can run on any x86-based computer. The emulator 

behaves exactly as an ISA would, updating the Ethernet Access 

Point (EAP), which bridges the ISA communications protocol 

and Ethernet, with coordinate and status information through a 

physical wireless communications module. However, the data 

that it sends is generated by the emulator, and not by real sen-

sors. This does provide us with the option to test the limitations 

of the wireless protocol, the fidelity of the synthesized VRME, 

as well as the cooperation amongst field agents.

We now briefly describe the hardware systems integration 

that was necessary for the final design of the physical agents. 

Numerous robotic IP cores were developed using hardware 

description languages to allow for a hardware/software 

 co-design of the functionalities required by each agent. The 

real-time and high frequency functions were targeted for digital 

controllers, while the communication, navigation and control 

functions were targeted for software tasks. Figure 10 shows the 

high-level view of our Stratix-II FPGA. All the connected 

modules have been mentioned and reside outside of the FPGA, 

hence off-chip.

As for the software environment, it was decided that a 

real-time operating system (RTOS), and an accompanying IP 

stack would be necessary for scalability and robustness of the 

access point. The following characterize our ideal operating 

system: multitasking and interrupt support, extensive language 

and microprocessor support, tool compatibility (compiler, 

assembler), wide array of services (queues, semaphores, tim-

ers), small area footprint (both program and data), scaleable 

design, availability of debugging tools, standards compatibility, 

FIGURE 9 Fo ur physical agents used in the final experiments.
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Success within an MAS was mainly achieved due to 
blackboard-based knowledge sharing, odometric error 
correction, simulation engine presence, and real-time 
mapping representation and searching techniques.
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extensive device driver support and industrial and academic 

support. It is  imperative to have a low interrupt latency to 

allow for  re-entrancy and to support pre-emptive scheduling 

as all those characteristics help us meet real-time constraints 

when dealing with the agent’s computational requirements; 

hence, after much deliberation, it was found that the uC/

OS-II [21] RTOS met most of these requirements. As for the 

IP stack, lightweight IP (lwIP) [22] was also selected as the 

most suitable candidate.

Let us now briefly explain the agent’s SLAM software struc-

ture that is depicted in Figure 11. The world model holds the 

agent’s current view of the external environment surrounding 

it. It feeds the control subsumption architecture, which reactively 

behaves to the world’s sensory inputs by controlling the agent’s 

motors. A navigation module decides how to freely navigate in 

the world, by localizing the agent (localizer module) and driv-

ing the proportional-integrator controller (PIC) in charge of keeping 

the physical agent moving at a constant velocity and in a 

straight forward direction. The utilized motors are servo 

motors, requiring pulse-width modulation (PWM) controllers. A 

separate, but analogous, communication subsumption architecture 

controls the on-board modems to react to multi-sensor fusion 

requests and acknowledgements, as well as to broadcast sensory 

and positioning information.

The control subsumption architecture is shown in Figure 12 

and contains six behaviors that, if fired, subsume the lower prior-

ity behaviors, and control the servo motors accordingly. An arbi-

tration task periodically wakes up and decides which behavior 

fires, depending on the current sensor inputs. The  latter task 

sleeps for 10 ms; hence, providing the agent with a sampling fre-

quency of 100 Hz. The realized control behaviors are:

1) Escape behavior fires if a bump is felt by the dual-axis 

accelerometer;

2) Avoid behavior fires if an object is detected to be too 

close to the agent;

3) Contain behavior fires if an environmental sensor value 

increases beyond a certain threshold;

4) Drive behavior fires whenever a wheel encoder or digital 

compass sensor value changes, and is the main driving 

behavior of the agent, allowing it to reach its goals;

5) Explore behavior fires if there are additional unexplored 

regions in the environment. It consists of randomly 

moving the agent within the environment; and 

6) Monitor behavior is the default one, and is fired if no other 

higher priority behavior fires. It allows the agent to drive 

back and forth within a certain path to monitor its local 

environment.

The communication subsumption architecture is shown in 

Figure 13 and contains four behaviors that, if fired, subsume the 

lower priority behaviors, and control the wireless modem 

accordingly. The two lower priority behaviors, Request and 

Acknowledge, only appear in the distributed scenarios. An arbi-

tration task periodically wakes up and decides which behavior 

fires, depending on the current sensor inputs. The realized 

communication behaviors are as follows:

1) Localize behavior fires if a change occurs in the agent’s pose;

2) Announce behavior fires if a change occurs in the agent’s 

sensors;

3) Request behavior fires when additional mapping or status 

information is required by the agent; and

4) Acknowledge behavior fires when a request has been processed 

and accepted.

FIGURE 12 Cont rol subsumption architecture.
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The experimental setup included a territory with a sample 

scenario that the agents were securing. Lit candles were used to 

indicate hazards while objects were used to indicate obstacles. 

Building blocks were used to indicate perimeters to be secured. 

The four physical agents proceed to map 

the environment using the TIMM meth-

odology, then continuously monitor and 

secure the designated perimeters, and pro-

duce a VRME output such as the one 

shown in Figure 14. The obstacles were 

modeled as grey vertical strips, while haz-

ards were modeled as red horizontal strips.

Figure 15 shows the path taken by 

one physical agent as it traverses the envi-

ronment while mapping and monitoring 

it. The path cells are modeled as green 

horizontal strips (a different green hue is 

used for each agent), and were placed at 

each coordinate in the environment 

whenever an agent sent an InteRCom 

coordinate update packet to the EAP.

Finally, the ISAs form a mobile ad-

hoc network and communicate using our 

devised Intelligent Robotic Communication 

(InteRCom) protocol. InteRCom is a cost 

effective protocol that attempts to meet 

the policies set forth in [23]. Those poli-

cies are summarized below:

 ❏ Connection establishment and 

resource allocation;

 ❏ Quality-of-service capable sensor traf-

fic delivery;

 ❏ ”Intelligent networking” on distribut-

ed architectures; and

 ❏ Ad-hoc networking infrastructure 

support.

The protocol was designed to be sca-

leable and robust. It is scaleable because 

it is extremely easy to incorporate het-

erogeneous sensor, as well as haptic 

feedback, information through InteR-

Com’s packet structure. The protocol is 

robust because it is built on top of the 

UDP/IP stack that was aforementioned, 

and it adds error checking at the appli-

cation level, to counter the no reliability 

constraint of the UDP network layer 

protocol. Figure 16 shows InteRCom’s 

packet structure. InteRCom currently 

operates over an augmented wireless 

serial line IP (SLIP) protocol that allows 

for multiple devices to communicate by 

sharing a common wireless channel. 

This is accomplished through the addi-

tions of the InteRCom header and 

 trailer to every IP datagram. As can be seen in the figure, the 

packet is subdivided into 5 main fields:

 ❏ InteRCom ID: 8-bit value used to uniquely identify the 

communicating device;

FIGURE 15 VRME ex perimental snapshot—an agent’s path.

FIGURE 14 VRME e xperimental snapshot—discovering a perimeter.
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 ❏ Header length: 8-bit value used to indicate the header length 

in bytes;

 ❏ Message type: 8-bit value used to indicate the type of mes-

sage being sent;

 ❏ CRC: 16-bit value captures a cyclic redundancy check 

that was performed by the transmitting device on the 

entire application packet; and

 ❏ User data: This is a dynamic length value, depending on the 

number of parameters that is being sent. Typically, it is a 

96-bit field as ternary floating-point values are sent either 

the agent pose or its sensory information.

V. Virtualized Reality Interface
The user interface of a multi-agent system is an important 

element of its overall structure. It is the method by which the 

user is presented with a stable and consistent view of the 

environment, and is allowed to interact with its elements. This 

section presents a unique user interface, termed the virtualized 

reality model of the environment, which provides the user with a 

real-time view of the real-world environment that is being 

secured. Such an  environment  synthesizes a world model 

from the fusion of the distributed sensor measurement data. It 

can be used by remote operators such as security operators, 

air traffic controllers and space mission commanders. The 

solution conforms to the X3D standard and supports the 

dynamic insertion/deletion of virtualized agents and objects. 

It also supports the dynamic loading of remote environment 

models for real-time decision making.

A. Virtualized Reality Model 
of the Environment
Human virtual environment tele-immersion 

has been a research endeavor undertaken by 

numerous institutions. Some researchers have 

gone as far as presenting the idea of “robotting into” a 

machine [24], where human operators can assume control of 

a remote robotic machine by immersing themselves into an 

environment of virtual sensing and actuating.

Since the remote access could be at any location and at any 

machine on the wireline network, the Java programming lan-

guage became the method of choice for network and graphi-

cal functionalities, while the Virtual Reality Modeling 

Language (VRML) was chosen for the implementation of the 

actual environment model in 3D. The VRML world was sys-

tematically converted to the more recent 3D scene and object 

representation: X3D. The latter is a standard published by the 

Web3D consortium, and has a rich set of componentized fea-

tures that can be described using XML. Research was per-

formed concerning other languages such as JavaScript 3D, Java 

3D, and Maya, but they were all found lacking in desired func-

tionality or were too computationally intensive for the pur-

pose at hand. 

B. VRME Details
To support the apparition of a new mobile agent into the 

environment, the EAP must first register the new agent into 

its local mapping tables, and transmit the new agent’s 

 identification to the VRME application. The VRME pro-

ceeds to instantiate a new agent node graph as shown in Fig-

ure 17. The agent node transform, agent0, has three 

characteristics translation, rotation and scaling factors, as well 

as a children node. The children node has three associated 

FIGURE 16 InteRCom  packet structure.
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The experimental setup included a territory with a 
sample scenario that the agents were securing.
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nodes: Shape, TouchSensor and TimeSensor. 

The Shape node defines the geometry of 

the agent node, as well as its appearance. In 

our case, agents are modeled as boxes with a 

texture of an agent’s picture enveloping the 

box. The TouchSensor node defines an event 

that occurs when a mouse down or a mouse 

up event occurs on the agent transform node. The ViewPoint 

node defines an agent-centric viewpoint for the navigation 

of the environment from the agent’s perspective. Finally, four 

TimeSensor nodes, all with one second intervals, define the 

controlled behavior of the agent within the X3D world. The 

translation and rotation timers control the rendering fluidity 

of the agent’s movements within the 3D world. The anima-

tion timer controls the translation and rotation timers by 

providing them with their start times when the agent is 

required to animate. Finally, the reload timer is used to peri-

odically check with the external world, whether the agent is 

required to animate.

Along with dynamically creating an agent transform node, 

we must also create the script node that allows for the agent’s 

behavior to be controlled. The agentMoveScript is dynamically 

added for each agent, and its inputs and outputs dynamically 

routed to the specific components, as shown in Figure 18. 

The sequence of events occurs as follows:

1) The reload timer generates an event that is routed to the 

reloadValues input of the agentMoveScript node;

2) The agentMoveScript node generates a signal that is routed 

to the enabled input of the animationTimer node;

3) The animationTimer node generates a signal that is routed 

to both startTime inputs of the translationTimer and rota-

tionTimer nodes;

4) The translationTimer and rotationTimer nodes generate 

fraction changed signals that are routed to the setPos-

Fraction and setHeadingFraction inputs of the agentMo-

veScript node;

5) The agentMoveScript node proceeds to translate and 

rotate the agent virtualization by generating appropri-

ate set translation and set rotation signals to the agent0 

node;

6) Finally, the agent0Touch node generates an isActive signal 

every time the agent is clicked upon by a mouse, which 

retrieves the agent’s sensory status for display.

In addition to the dynamic insertion of virtualized 

agent nodes, the VRME application also supports the 

dynamic insertion of virtualized objects, mainly obstacles 

(displayed as white thin vertical stripes), to indicate walls 

and barriers, hazards (displayed as red thick horizontal 

plates), to indicate environmental parameters that are 

beyond set thresholds, paths (displayed as colored thin hori-

zontal plates), to indicate agent path traversals, and finally, 

cells (displayed as grey thin horizontal plates), to indicate 

the entropy and mutual information values of a particular 

coordinate.

VI. Future Enhancements
The utilization of previously developed robust speed control 

mechanism and global navigation scheme would greatly 

improve the resolution of the SLAM problem that exists 

when ISAs traverse unstructured environments. Shown in 

[25], the neural global navigation provides control of an ISA’s 

direction, planning of its path to the main goal, tracking a 

predefined path as sub-goals, and avoidance of expected and 

unexpected obstacles, while the incorporated fuzzy-neural 

system provides speed control of the ISA.
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FIGURE 17 Virtualiz ed agent node graph.

The virtualized reality model of the environment 
provides the user with a real-time view 
of the real-world environment that is 
being secured.
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On another front, there are two ways that operations 

research concepts can be used to enhance the MAS models 

presented: sensor management and risk analysis. Sensor manage-

ment deals with the operational aspects of deploying a sensor 

network in the field. In other words, it allows us to determine 

among other factors the number of sensors, and their mix for 

use in territorial security or defense systems using an optimi-

zation framework [26].

Risk often refers to the effect of uncertainty on a system’s 

objectives; in this case, the uncertainty of the MAS being able 

to effectively monitor and secure the large geographic area. 

Risk of an event is traditionally defined as the multiplication 

of the likelihood of an event occurring by its impact [27]. 

Risk analysis allows us to take into consideration the varia-

tions (both negative and positive) due to future unknown 

events. Often, large numbers of scenarios with various 

degrees of variability are generated in order 

to examine future uncertainty [28]. This is 

referred to as massive scenario generation 

(MSG). Thus, one interesting area to investi-

gate would be the use of MSG in MAS sce-

nario evaluation in order to determine the 

degree to which a particular sensor configuration is able to 

mitigate risks for the application at hand.

While MSG would be a good method to assess the risk 

associated with particular sensor configurations simulated 

using a MAS, the high computational cost of repeatedly run-

ning a MAS does not allow a MAS to be used as a fitness 

evaluation within a sensor management optimization frame-

work. Even for a very simplistic MAS-based MSG evaluation 

of a single configuration, a large number of computations 

would be used in the evaluation of optimization fitness 

functions. Thus, as was done in the case of discrete event 

simulation [29][30], creating simplified MAS models in 

order to carry out sensor management-type analysis would 

also be of interest.

We can also consider, within a MAS, the addition of vari-

ous risk-producing events such as external or environmental 

Risk analysis allows us to take into consideration the 
variations (both negative and positive) due to future 
unknown events.

FIGURE 18 Virtualize d agent state diagram.
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risks (e.g. chemical spills, potholes, hostility measures), as well 

as internal risks (e.g. power failure, sensor failure) which 

impact on the good working order of a particular sensor con-

figuration. MAS models could thus be enhanced by the 

inclusion of this random event mix which would further 

contribute to adding a risk dimension to multi-agent sensor 

models and systems.

Finally, we can also consider a dynamic sensor management 

problem which is similar to dynamic vehicle routing [31] 

where instead of passengers or parcels to pick up we have vari-

ous sensor types that need to be placed in various locations. In 

dynamic sensor management, sensors are dynamically allocated 

to perform urgently required tasks. The urgency of such a 

dynamic deployment or re-deployment of a sensor would be 

determined by the perceived risk of not having a sensor present 

over some time period in a particular location or area. In addi-

tion, sensor cueing and hand-off between sensors would also be 

important research areas.

VII. Conclusions
In this article, a multi-agent system composed of agents that 

each possess a limited amount of computational power and 

communications bandwidth for a territorial security applica-

tion was designed, developed and experimentally verified.

A novel agent architecture has been presented. The retro-

active agent architecture describes a novel concept in the 

design of intelligent machines. Originally attributed to Vernon 

B. Mountcastle, who suggested that every part of the human’s 

cortex is made up of the same structure, the common cortical 

theory is now being viewed, by some neuroscientists, as the 

elusive link to building truly intelligent machines [32]. 

Finally a virtualized reality model of the environment was 

developed, created and validated by feeding real-world and 

real-time sensory data begotten from physical agents, and 

dynamically creating a world filled with virtualized agents, 

paths, obstacles, hazards, perimeters and cells. The synchroni-

zation between the VRME and the various access points (e.g., 

EAP) also allows for agents to drop in and out of range, or in 

and out of the environment completely, without affecting the 

virtualized world. This seamless immersion aids human moni-

tors to remotely get safer and better acquainted with 

unknown, and possibly hostile, environments, by deploying a 

foraging society of robotic agents that synthesizes the VRME 

in real-time.
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